Crossref journal-article
Springer Science and Business Media LLC
Nature Protocols (297)
Bibliography

Okolo, C. A., Kounatidis, I., Groen, J., Nahas, K. L., Balint, S., Fish, T. M., Koronfel, M. A., Cortajarena, A. L., Dobbie, I. M., Pereiro, E., & Harkiolaki, M. (2021). Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nature Protocols, 16(6), 2851–2885.

Authors 11
  1. Chidinma A. Okolo (first)
  2. Ilias Kounatidis (additional)
  3. Johannes Groen (additional)
  4. Kamal L. Nahas (additional)
  5. Stefan Balint (additional)
  6. Thomas M. Fish (additional)
  7. Mohamed A. Koronfel (additional)
  8. Aitziber L. Cortajarena (additional)
  9. Ian M. Dobbie (additional)
  10. Eva Pereiro (additional)
  11. Maria Harkiolaki (additional)
References 109 Referenced 42
  1. Peddie, C. J. & Schieber, N. L. The importance of sample processing for correlative imaging (or, rubbish in, rubbish out). In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 37–66 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch3)
  2. Sochacki, K. A., Shtengel, G., van Engelenburg, S. B., Hess, H. F. & Taraska, J. W. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat. Methods 11, 305–308 (2014). (10.1038/nmeth.2816) / Nat. Methods by KA Sochacki (2014)
  3. Löschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014). / J. Cell Sci. by A Löschberger (2014)
  4. Müller-Reichert, T., Srayko, M., Hyman, A., O’Toole, E. T. & McDonald, K. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol. 79, 101–119 (2007). (10.1016/S0091-679X(06)79004-5) / Methods Cell Biol. by T Müller-Reichert (2007)
  5. Watari, N. & Herman, L. Correlative light and electron microscopy of bat islets of Langerhans in hibernating and nonhibernating states. Am. Zoolog. 5, 678 (1965). / Am. Zoolog. by N Watari (1965)
  6. Timmermans, F. J. & Otto, C. Contributed review: review of integrated correlative light and electron microscopy. Rev. Sci. Instrum. 86, 011501 (2015). (10.1063/1.4905434) / Rev. Sci. Instrum. by FJ Timmermans (2015)
  7. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). (10.1126/science.1127344) / Science by E Betzig (2006)
  8. Jahn, K. A. et al. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43, 565–582 (2012). (10.1016/j.micron.2011.12.004) / Micron by KA Jahn (2012)
  9. Guérin, C. J., Liv, N. & Klumperman, J. It’s a small, small world. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 1–21 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch1)
  10. Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N. & Lickfeld, K. G. Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155, 381–390 (1983). (10.1128/jb.155.1.381-390.1983)
  11. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007). (10.1016/j.jsb.2007.07.011) / J. Struct. Biol. by A Sartori (2007)
  12. Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., McIntosh, J. R. & Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109 (2007). (10.1111/j.1365-2818.2007.01794.x) / J. Microsc. by CL Schwartz (2007)
  13. Bharat, T. A. M. & Kukulski, W. Cryo-correlative light and electron microscopy: toward in situ instructional biology. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 137–153 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch8)
  14. Hampton, C. M. et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 12, 150–167 (2017). (10.1038/nprot.2016.168) / Nat. Protoc. by CM Hampton (2017)
  15. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990). (10.1016/S0022-2836(05)80271-2) / J. Mol. Biol. by R Henderson (1990)
  16. Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020). (10.1126/science.aaz5357) / Science by DP Hoffman (2020)
  17. Lučić, V., Rigort, A. & Baumeister, W. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202, 407–419 (2013). (10.1083/jcb.201304193) / J. Cell Biol. by V Lučić (2013)
  18. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016). (10.1016/j.tcb.2016.08.006) / Trends Cell Biol. by M Beck (2016)
  19. Schneider, G. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75, 85–104 (1998). (10.1016/S0304-3991(98)00054-0) / Ultramicroscopy by G Schneider (1998)
  20. Schneider, G. et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7, 985–987 (2010). (10.1038/nmeth.1533) / Nat. Methods by G Schneider (2010)
  21. Groen, J., Conesa, J. J., Valcárcel, R. & Pereiro, E. The cellular landscape by cryo soft X-ray tomography. Biophys. Rev. 11, 611–619 (2019). (10.1007/s12551-019-00567-6) / Biophys. Rev. by J Groen (2019)
  22. Kounatidis, I. et al. 3D correlative cryo-structured illumination fluorescence and soft x-ray microscopy elucidates reovirus intracellular release pathway. Cell 182, 1–16 (2020). (10.1016/j.cell.2020.05.051) / Cell by I Kounatidis (2020)
  23. Le Gros, M. A. et al. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source. J. Synchrotron Radiat. 21, 1370–1377 (2014). (10.1107/S1600577514015033) / J. Synchrotron Radiat. by MA Le Gros (2014)
  24. Sorrentino, A. et al. MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging. J. Synchrotron Radiat. 22, 1112–1117 (2015). (10.1107/S1600577515008632) / J. Synchrotron Radiat. by A Sorrentino (2015)
  25. Balint, S. et al. Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science 368, 897–901 (2020). (10.1126/science.aay9207) / Science by S Balint (2020)
  26. Phillips, M. et al. CryoSIM: super resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultra-structural imaging. Optica 7, 802–812 (2020). (10.1364/OPTICA.393203) / Optica by M Phillips (2020)
  27. Kaufmann, R., Hagen, C. & Grünewald, K. Super-resolution fluorescence microscopy of cryo-immobilized samples. In European Microscopy Congress 2016: Proceedings 1017–1017. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.6928 (2016). (10.1002/9783527808465.EMC2016.6928)
  28. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014). (10.1021/nl501870p) / Nano Lett. by R Kaufmann (2014)
  29. Kaufmann, R., Hagen, C. & Grünewald, K. Fluorescence cryo-microscopy: current challenges and prospects. Curr. Opin. Chem. Biol. 20, 86–91 (2014). (10.1016/j.cbpa.2014.05.007) / Curr. Opin. Chem. Biol. by R Kaufmann (2014)
  30. Duke, E. M. H. et al. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143, 77–87 (2014). (10.1016/j.ultramic.2013.10.006) / Ultramicroscopy by EMH Duke (2014)
  31. Fokkema, J. et al. Fluorescently labelled silica coated gold nanoparticles as fiducial markers for correlative light and electron microscopy. Sci. Rep. 8, 1–10 (2018). (10.1038/s41598-018-31836-1) / Sci. Rep. by J Fokkema (2018)
  32. Geissinger, H. D. A precise stage arrangement for correlative microscopy for specimens mounted on glass slides, stubs or EM grids. J. Microsc. 100, 113–117 (1974). (10.1111/j.1365-2818.1974.tb03919.x) / J. Microsc. by HD Geissinger (1974)
  33. Su, Y. et al. Multi-dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy. Biophys. Rev. 2, 121–135 (2010). (10.1007/s12551-010-0035-2) / Biophys. Rev. by Y Su (2010)
  34. Lakowicz, J. R. Fluorophores. In Principles of Fluorescence Spectroscopy. 3rd edn, 63–95 (Springer, 2006). (10.1007/978-0-387-46312-4_3)
  35. Lavis, L. D. & Raines, R. T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). (10.1021/cb700248m) / ACS Chem. Biol. by LD Lavis (2008)
  36. Anderson, K., Nilsson, T. & Fernandez-Rodriguez, J. Challenges for CLEM from a light microscopy perspective. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 23–35 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch2)
  37. Paul-Gilloteaux, P. & Schorb, M. Correlating data from imaging modalities. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 191–210 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch11)
  38. Pereiro, E., Chichón, F. J. & Carrascosa, J. L. Correlative cryo soft X-ray imaging. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 155–169 (John Wiley & Sons, 2020). (10.1002/9781119086420.ch9)
  39. Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9, 586–596 (2014). (10.1038/nprot.2014.037) / Nat. Protoc. by A Rizk (2014)
  40. Pereiro, E., Nicolás, J., Ferrer, S. & Howells, M. R. A soft X-ray beamline for transmission X-ray microscopy at ALBA. J. Synchrotron Radiat. 16, 505–512 (2009). (10.1107/S0909049509019396) / J. Synchrotron Radiat. by E Pereiro (2009)
  41. Harkiolaki, M. et al. Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg. Top. Life Sci. 2, 81–92 (2018). (10.1042/ETLS20170086) / Emerg. Top. Life Sci. by M Harkiolaki (2018)
  42. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008). (10.1529/biophysj.107.120345) / Biophys. J. by MGL Gustafsson (2008)
  43. Carrascosa, J. L. et al. Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. J. Struct. Biol. 168, 234–239 (2009). (10.1016/j.jsb.2009.07.009) / J. Struct. Biol. by JL Carrascosa (2009)
  44. Pérez-Berná, A. J. et al. Structural changes in cells imaged by soft X-ray cryo-tomography during hepatitis C virus infection. ACS Nano 10, 6597–6611 (2016). (10.1021/acsnano.6b01374) / ACS Nano by AJ Pérez-Berná (2016)
  45. Spink, M. C. et al. Correlation of cryo soft X-ray tomography with cryo fluorescence microscopy to characterise cellular organelles at beamline B24, Diamond Light Source. Microsc. Microanal. 24, 374–375 (2018). (10.1017/S1431927618014162) / Microsc. Microanal. by MC Spink (2018)
  46. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008). / Absorption and Scattering of Light by Small Particles by CF Bohren (2008)
  47. Kerker, M. The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 2013).
  48. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer Science & Business Media, 2013).
  49. Papavassiliou, G. C. Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185–271 (1979). (10.1016/0079-6786(79)90001-3) / Prog. Solid State Chem. by GC Papavassiliou (1979)
  50. Weiner, A. et al. Vitrification of thick samples for soft X-ray cryo-tomography by high pressure freezing. J. Struct. Biol. 181, 77–81 (2013). (10.1016/j.jsb.2012.10.005) / J. Struct. Biol. by A Weiner (2013)
  51. Gal, A. et al. Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles. Proc. Natl Acad. Sci. USA 115, 11000–11005 (2018). (10.1073/pnas.1804139115) / Proc. Natl Acad. Sci. USA by A Gal (2018)
  52. Conesa, J. J. et al. Unambiguous intracellular localization and quantification of a potent iridium anticancer compound by correlative 3D cryo X-ray imaging. Angew. Chem. Int. Ed. Engl. 59, 1270–1278 (2020). (10.1002/anie.201911510) / Angew. Chem. Int. Ed. Engl. by JJ Conesa (2020)
  53. Ando, T. et al. The 2018 correlative microscopy techniques roadmap. J. Phys. D Appl. Phys. 51, 443001 (2018). (10.1088/1361-6463/aad055) / J. Phys. D Appl. Phys. by T Ando (2018)
  54. Arnold, J. et al. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110, 860–869 (2016). (10.1016/j.bpj.2015.10.053) / Biophys. J. by J Arnold (2016)
  55. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011). (10.1083/jcb.201009037) / J. Cell Biol. by W Kukulski (2011)
  56. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503–513 (2015). (10.1038/nmeth.3400) / Nat. Methods by P de Boer (2015)
  57. Varsano, N. et al. Development of correlative cryo-soft X-ray tomography and stochastic reconstruction microscopy. A study of cholesterol crystal early formation in cells. J. Am. Chem. Soc. 138, 14931–14940 (2016). (10.1021/jacs.6b07584) / J. Am. Chem. Soc. by N Varsano (2016)
  58. Hagen, C. et al. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells. Ultramicroscopy 146, 46–54 (2014). (10.1016/j.ultramic.2014.05.009) / Ultramicroscopy by C Hagen (2014)
  59. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128, 2795–2804 (2015). / J. Cell Sci. by KD Elgass (2015)
  60. McDermott, G., Le Gros, M. A., Knoechel, C. G., Uchida, M. & Larabell, C. A. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol. 19, 587–595 (2009). (10.1016/j.tcb.2009.08.005) / Trends Cell Biol. by G McDermott (2009)
  61. Kapishnikov, S. et al. Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci. Rep. 7, 7610 (2017). (10.1038/s41598-017-06650-w) / Sci. Rep. by S Kapishnikov (2017)
  62. Smith, E. A. et al. Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys. J. 107, 1988–1996 (2014). (10.1016/j.bpj.2014.09.011) / Biophys. J. by EA Smith (2014)
  63. van Hest, J. J. Ha et al. Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy. J. Microsc. 274, 13–22 (2019). (10.1111/jmi.12778) / J. Microsc. by JJHa van Hest (2019)
  64. Aslan, K., Wu, M., Lakowicz, J. R. & Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129, 1524–1525 (2007). (10.1021/ja0680820) / J. Am. Chem. Soc. by K Aslan (2007)
  65. Aslan, K. & Geddes, C. D. Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. In Metal-Enhanced Fluorescence (ed. Geddes, C. D.) 1–23 (John Wiley & Sons, 2010). (10.1002/9780470642795.ch1)
  66. Lee, D., Lee, J., Song, J., Jen, M. & Pang, Y. Homogeneous silver colloidal substrates optimal for metal-enhanced fluorescence. Phys. Chem. Chem. Phys. 21, 11599–11607 (2019). (10.1039/C9CP00585D) / Phys. Chem. Chem. Phys. by D Lee (2019)
  67. Hodgson, L., Verkade, P. & Yamauchi, Y. Correlative light and electron microscopy of influenza virus entry and budding. Influenza Virus (ed. Yamauchi, Y.) 237–260 (Humana Press, 2018). (10.1007/978-1-4939-8678-1_12)
  68. McGorty, R., Kamiyama, D. & Huang, B. Active microscope stabilization in three dimensions using image correlation. Opt. Nanoscopy https://doi.org/10.1186/2192-2853-2-3 (2013). (10.1186/2192-2853-2-3)
  69. Metskas, L. A. & Briggs, J. A. G. Fluorescence-based detection of membrane fusion state on a cryo-EM grid using correlated cryo-fluorescence and cryo-electron microscopy. Microsc. Microanal. 25, 942–949 (2019). (10.1017/S1431927619000606) / Microsc. Microanal. by LA Metskas (2019)
  70. Walling, M. A., Novak, J. A. & Shepard, J. R. E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 10, 441–491 (2009). (10.3390/ijms10020441) / Int. J. Mol. Sci. by MA Walling (2009)
  71. Wegner, K. D. & Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015). (10.1039/C4CS00532E) / Chem. Soc. Rev. by KD Wegner (2015)
  72. Hemelaar, S. R. et al. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep. 7, 1–9 (2017). (10.1038/s41598-017-00797-2) / Sci. Rep. by SR Hemelaar (2017)
  73. Schade, A. E. et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111, 1366–1377 (2008). (10.1182/blood-2007-04-084814) / Blood by AE Schade (2008)
  74. Trickett, A. & Kwan, Y. L. T cell stimulation and expansion using anti-CD3/CD28 beads. J. Immunol. Methods 275, 251–255 (2003). (10.1016/S0022-1759(03)00010-3) / J. Immunol. Methods by A Trickett (2003)
  75. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14, 102–103 (2017). (10.1038/nmeth.4170) / Nat. Methods by P Paul-Gilloteaux (2017)
  76. Bogovic, J. A., Hanslovsky, P., Wong, A. & Saalfeld, S. Robust registration of calcium images by learned contrast synthesis. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) 1123–1126 (IEEE, 2016). (10.1109/ISBI.2016.7493463)
  77. Miles, B. T. et al. Direct evidence of lack of colocalisation of fluorescently labelled gold labels used in correlative light electron microscopy. Sci. Rep. 7, 44666 (2017). (10.1038/srep44666)
  78. Oorschot, V., de Wit, H., Annaert, W. G. & Klumperman, J. A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J. Histochem. Cytochem. 50, 1067–1080 (2002). (10.1177/002215540205000809) / J. Histochem. Cytochem. by V Oorschot (2002)
  79. Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019). (10.1038/s41598-018-37728-8) / Sci. Rep. by MW Tuijtel (2019)
  80. Schellenberger, P. et al. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014). (10.1016/j.ultramic.2013.10.011) / Ultramicroscopy by P Schellenberger (2014)
  81. Pezzi, H. M., Niles, D. J., Schehr, J. L., Beebe, D. J. & Lang, J. M. Integration of magnetic bead-based cell selection into complex isolations. ACS Omega 3, 3908–3917 (2018). (10.1021/acsomega.7b01427) / ACS Omega by HM Pezzi (2018)
  82. Uludag, H., Ubeda, A. & Ansari, A. At the intersection of biomaterials and gene therapy: progress in non-viral delivery of nucleic acids. Front. Bioeng. Biotechnol. 7, 131 (2019). (10.3389/fbioe.2019.00131) / Front. Bioeng. Biotechnol. by H Uludag (2019)
  83. Booth, D. G., Beckett, A. J., Prior, I. A. & Meijer, D. SuperCLEM: an accessible correlative light and electron microscopy approach for investigation of neurons and glia in vitro. Biol. Open 8, bio042085 (2019). (10.1242/bio.042085) / Biol. Open by DG Booth (2019)
  84. Telling, N. D. et al. Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem. Biol. 24, 1205–1215.e3 (2017). (10.1016/j.chembiol.2017.07.014) / Cell Chem. Biol. by ND Telling (2017)
  85. Jamme, F. et al. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. J. Synchrotron Radiat. 27, 772–778 (2020). (10.1107/S1600577520003847) / J. Synchrotron Radiat. by F Jamme (2020)
  86. Ahn, S., Jung, S. Y. & Lee, S. J. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules 18, 5858–5890 (2013). (10.3390/molecules18055858) / Molecules by S Ahn (2013)
  87. Niclis, J. C. et al. Three-dimensional imaging of human stem cells using soft X-ray tomography. J. R. Soc. Interface 12, 20150252 (2015). (10.1098/rsif.2015.0252) / J. R. Soc. Interface by JC Niclis (2015)
  88. Conesa, J. J. et al. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography. Sci. Rep. 6, 22354 (2016). (10.1038/srep22354) / Sci. Rep. by JJ Conesa (2016)
  89. Matsuda, A., Schermelleh, L., Hirano, Y., Haraguchi, T. & Hiraoka, Y. Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy. Sci. Rep. 8, 7583 (2018). (10.1038/s41598-018-25922-7) / Sci. Rep. by A Matsuda (2018)
  90. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (10.1038/nmeth.2019) / Nat. Methods by J Schindelin (2012)
  91. Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015). (10.1038/srep15915) / Sci. Rep. by G Ball (2015)
  92. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). (10.1006/jsbi.1996.0013) / J. Struct. Biol. by JR Kremer (1996)
  93. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696 (2012). (10.1038/nmeth.2075) / Nat. Methods by F de Chaumont (2012)
  94. Luengo, I. et al. SuRVoS: Super-Region Volume Segmentation workbench. J. Struct. Biol. 198, 43–53 (2017). (10.1016/j.jsb.2017.02.007) / J. Struct. Biol. by I Luengo (2017)
  95. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). (10.1002/pro.3235) / Protein Sci. by TD Goddard (2018)
  96. Bouterfa, H. et al. Expression of different extracellular matrix components in human brain tumor and melanoma cells in respect to variant culture conditions. J. Neurooncol. 44, 23–33 (1999). (10.1023/A:1006331416283) / J. Neurooncol. by H Bouterfa (1999)
  97. Vaz, F. et al. Accessibility to peptidoglycan is important for the recognition of gram-positive bacteria in Drosophila. Cell Rep. 27, 2480–2492.e6 (2019). (10.1016/j.celrep.2019.04.103) / Cell Rep. by F Vaz (2019)
  98. Vizcardo, R. et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36 (2013). (10.1016/j.stem.2012.12.006) / Cell Stem Cell by R Vizcardo (2013)
  99. Peng, T. et al. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc. Natl Acad. Sci. USA 107, 2944–2949 (2010). (10.1073/pnas.0912090107) / Proc. Natl Acad. Sci. USA by T Peng (2010)
  100. Farmer, B. C., Kluemper, J. & Johnson, L. A. Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation. Cells 8, 182 (2019). (10.3390/cells8020182)
  101. Chazotte, B. Labeling lysosomes in live cells with LysoTracker. Cold Spring Harb. Protoc. 2011, pdb.prot5571 (2011). (10.1101/pdb.prot5571) / Cold Spring Harb. Protoc. by B Chazotte (2011)
  102. Bianchini, P. et al. Live imaging of mammalian retina: rod outer segments are stained by conventional mitochondrial dyes. J. Biomed. Opt. 13, 054017 (2008). (10.1117/1.2982528) / J. Biomed. Opt. by P Bianchini (2008)
  103. Awasthi, S., Madhusoodhanan, R. & Wolf, R. Surfactant protein-A and toll-like receptor-4 modulate immune functions of preterm baboon lung dendritic cell precursor cells. Cell. Immunol. 268, 87–96 (2011). (10.1016/j.cellimm.2011.02.009) / Cell. Immunol. by S Awasthi (2011)
  104. Drulyte, I. et al. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr. D Struct. Biol. 74, 560–571 (2018). (10.1107/S2059798318006496) / Acta Crystallogr. D Struct. Biol. by I Drulyte (2018)
  105. Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P. & Ranson, N. A. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100, 3–15 (2016). (10.1016/j.ymeth.2016.02.017) / Methods by RF Thompson (2016)
  106. Grassucci, R. A., Taylor, D. J. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat. Protoc. 2, 3239–3246 (2007). (10.1038/nprot.2007.452) / Nat. Protoc. by RA Grassucci (2007)
  107. Hiroyasu, A., DeWitt, D. C. & Goodman, A. G. Extraction of hemocytes from Drosophila melanogaster larvae for microbial infection and analysis. J. Vis. Exp. 135, 57077 (2018). / J. Vis. Exp. by A Hiroyasu (2018)
  108. Dobro, M. J., Melanson, L. A., Jensen, G. J. & McDowall, A. W. Plunge freezing for electron cryomicroscopy. In Cryo-EM, Part A: Sample Preparation and Data Collection Vol. 481 (ed. Jensen, G. J.) 63–82 (Academic Press, 2010). (10.1016/S0076-6879(10)81003-1)
  109. Noble, A. J. et al. Routine single particle CryoEM sample and grid characterization by tomography. eLife 7, e34257 (2018). (10.7554/eLife.34257) / eLife by AJ Noble (2018)
Dates
Type When
Created 4 years, 3 months ago (May 14, 2021, 12:03 p.m.)
Deposited 2 years, 9 months ago (Oct. 26, 2022, 9:14 p.m.)
Indexed 1 week, 1 day ago (Aug. 12, 2025, 6:15 p.m.)
Issued 4 years, 3 months ago (May 14, 2021)
Published 4 years, 3 months ago (May 14, 2021)
Published Online 4 years, 3 months ago (May 14, 2021)
Published Print 4 years, 2 months ago (June 1, 2021)
Funders 3
  1. Diamond Light Source 10.13039/100011889

    Region: Europe

    pri (Research institutes and centers)

    Labels2
    1. Diamond
    2. Diamond Light Source Ltd
  2. Wellcome Trust 10.13039/100004440 Wellcome
  3. EC | Horizon 2020 Framework Programme 10.13039/100010661 Horizon 2020 Framework Programme

    Region: Europe

    gov (National government)

    Labels13
    1. EU Framework Programme for Research and Innovation H2020
    2. Horizon 2020
    3. Rahmenprogramm Horizont 2020
    4. Programa Marco Horizonte 2020
    5. Programme-cadre Horizon 2020
    6. Programma quadro Orizzonte 2020
    7. Program ramowy Horyzont 2020
    8. Horizont 2020
    9. Horizonte 2020
    10. Orizzonte 2020
    11. Horyzont 2020
    12. Horizon 2020 Framework Programme (H2020)
    13. H2020

@article{Okolo_2021, title={Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures}, volume={16}, ISSN={1750-2799}, url={http://dx.doi.org/10.1038/s41596-021-00522-4}, DOI={10.1038/s41596-021-00522-4}, number={6}, journal={Nature Protocols}, publisher={Springer Science and Business Media LLC}, author={Okolo, Chidinma A. and Kounatidis, Ilias and Groen, Johannes and Nahas, Kamal L. and Balint, Stefan and Fish, Thomas M. and Koronfel, Mohamed A. and Cortajarena, Aitziber L. and Dobbie, Ian M. and Pereiro, Eva and Harkiolaki, Maria}, year={2021}, month=may, pages={2851–2885} }