Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Modi, G., Parate, S. K., Kwon, C., Meng, A. C., Khandelwal, U., Tullibilli, A., Horwath, J., Davies, P. K., Stach, E. A., Li, J., Nukala, P., & Agarwal, R. (2024). Electrically driven long-range solid-state amorphization in ferroic In2Se3. Nature, 635(8040), 847–853.

Authors 12 University of Pennsylvania
  1. Gaurav Modi (first)
  2. Shubham K. Parate (additional)
  3. Choah Kwon (additional)
  4. Andrew C. Meng (additional)
  5. Utkarsh Khandelwal (additional)
  6. Anudeep Tullibilli (additional)
  7. James Horwath (additional)
  8. Peter K. Davies (additional)
  9. Eric A. Stach (additional) University of Pennsylvania
  10. Ju Li (additional) University of Pennsylvania
  11. Pavan Nukala (additional)
  12. Ritesh Agarwal (additional) University of Pennsylvania
References 48 Referenced 11
  1. Wong, H. S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010). (10.1109/JPROC.2010.2070050) / Proc. IEEE by HSP Wong (2010)
  2. Nam, S. W. et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561–1566 (2012). (10.1126/science.1220119) / Science by SW Nam (2012)
  3. Nukala, P., Lin, C. C., Composto, R. & Agarwal, R. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nat. Commun. 7, 10482 (2016). (10.1038/ncomms10482) / Nat. Commun. by P Nukala (2016)
  4. Lee, S. H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007). (10.1038/nnano.2007.291) / Nat. Nanotechnol. by SH Lee (2007)
  5. Jung, Y., Nam, S. W. & Agarwal, R. High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires. Nano Lett. 11, 1364–1368 (2011). (10.1021/nl104537c) / Nano Lett. by Y Jung (2011)
  6. Fecht, H. J. Defect-induced melting and solid-state amorphization. Nature 356, 133–135 (1992). (10.1038/356133a0) / Nature by HJ Fecht (1992)
  7. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998). (10.1103/PhysRevB.58.6353) / Phys. Rev. B by S Zapperi (1998)
  8. Casals, B., Nataf, G. F. & Salje, E. K. H. Avalanche criticality during ferroelectric/ ferroelastic switching. Nat. Commun. 12, 345 (2021). (10.1038/s41467-020-20477-6) / Nat. Commun. by B Casals (2021)
  9. Biroli, G. Disordered solids: in search of the perfect glass. Nat. Phys. 10, 555–556 (2014). (10.1038/nphys3054) / Nat. Phys. by G Biroli (2014)
  10. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011). (10.1103/RevModPhys.83.587) / Rev. Mod. Phys. by L Berthier (2011)
  11. Russo, J., Romano, F. & Tanaka, H. Glass forming ability in systems with competing orderings. Phys. Rev. 8, 021040 (2018). (10.1103/PhysRevX.8.021040) / Phys. Rev. by J Russo (2018)
  12. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960). (10.1038/187869b0) / Nature by W Klement (1960)
  13. Zhang, L. et al. Amorphous martensite in β-Ti alloys. Nat. Commun. 9, 506 (2018). (10.1038/s41467-018-02961-2) / Nat. Commun. by L Zhang (2018)
  14. Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. & Grimsditch, M. Solid-state amorphization of Zr3Al: evidence of an elastic instability and first-order phase transformation. Phys. Rev. Lett. 59, 2987–2990 (1987). (10.1103/PhysRevLett.59.2987) / Phys. Rev. Lett. by LE Rehn (1987)
  15. Bridges, F. et al. Local vibrations and negative thermal expansion in ZrW2O8. Science 280, 886–890 (1998). (10.1126/science.280.5365.886) / Science by F Bridges (1998)
  16. He, Y. et al. In situ observation of shear-driven amorphization in silicon crystals. Nat. Nanotechnol. 11, 866–871 (2016). (10.1038/nnano.2016.166) / Nat. Nanotechnol. by Y He (2016)
  17. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008). (10.1038/nmat2226) / Nat. Mater. by K Shportko (2008)
  18. Nukala, P. et al. Inverting polar domains via electrical pulsing in metallic germanium telluride. Nat. Commun. 8, 15033 (2017). (10.1038/ncomms15033) / Nat. Commun. by P Nukala (2017)
  19. Edwards, A. H. et al. Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210 (2006). (10.1103/PhysRevB.73.045210) / Phys. Rev. B by AH Edwards (2006)
  20. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001). (10.1093/acprof:oso/9780198507789.001.0001)
  21. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). (10.1038/ncomms14956) / Nat. Commun. by W Ding (2017)
  22. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018). (10.1103/PhysRevLett.120.227601) / Phys. Rev. Lett. by J Xiao (2018)
  23. Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 47601 (2020). (10.1103/PhysRevLett.125.047601) / Phys. Rev. Lett. by C Xu (2020)
  24. Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β’-In2Se3. Nat. Commun. 12, 3665 (2021). (10.1038/s41467-021-23882-7) / Nat. Commun. by C Xu (2021)
  25. Zhang, Z. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit. Adv. Mater. 34, 2106951 (2022). (10.1002/adma.202106951) / Adv. Mater. by Z Zhang (2022)
  26. Wang, L. et al. In-plane ferrielectric order in van der Waals β′-In2Se3. ACS Nano 18, 809–818 (2024). (10.1021/acsnano.3c09250) / ACS Nano by L Wang (2024)
  27. Peng, H., Schoen, D. T., Meister, S., Zhang, X. F. & Cui, Y. Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. J. Am. Chem. Soc. 129, 34–35 (2007). (10.1021/ja067436k) / J. Am. Chem. Soc. by H Peng (2007)
  28. Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143–10149 (2019). (10.1021/acs.chemmater.9b03499) / Chem. Mater. by L Liu (2019)
  29. Van Landuyt, J., Hatwell, H. & Amelinckx, S. The domain structure of β-In2S3 ‘single crystals’ due to the ordering of indium vacancies. Mater. Res. Bull. 3, 519–528 (1968). (10.1016/0025-5408(68)90077-9) / Mater. Res. Bull. by J Van Landuyt (1968)
  30. Van Landuyt, J. & Amelinckx, S. Antiphase boundaries and twins associated with ordering of indium vacancies in β-In2S3. Phys. Status Solidi B Basic Solid State Phys. 31, 589–600 (1969). (10.1002/pssb.19690310219) / Phys. Status Solidi B Basic Solid State Phys. by J Van Landuyt (1969)
  31. Chen, P. J. & Montgomery, S. T. A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23, 199–207 (1980). (10.1080/00150198008018803) / Ferroelectrics by PJ Chen (1980)
  32. Modi, G., Stach, E. A. & Agarwal, R. Low-power switching through disorder and carrier localization in bismuth-doped germanium telluride phase change memory nanowires. ACS Nano 14, 2162–2171 (2020). (10.1021/acsnano.9b08986) / ACS Nano by G Modi (2020)
  33. Modi, G. et al. Controlled self-assembly of nanoscale superstructures in phase-change Ge–Sb–Te nanowires. Nano Lett. 24, 5799–5807 (2024). (10.1021/acs.nanolett.4c00878) / Nano Lett. by G Modi (2024)
  34. Yan, Z. H., Klassen, T., Michaelsen, C., Oehring, M. & Bormann, R. Inverse melting in the Ti-Cr system. Phys. Rev. B 47, 8520–8527 (1993). (10.1103/PhysRevB.47.8520) / Phys. Rev. B by ZH Yan (1993)
  35. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021). (10.1038/s41578-021-00304-0) / Nat. Rev. Mater. by W Li (2021)
  36. Matzen, S. et al. Super switching and control of in-plane ferroelectric nanodomains in strained thin films. Nat. Commun. 5, 4415 (2014). (10.1038/ncomms5415) / Nat. Commun. by S Matzen (2014)
  37. Gao, P. et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011). (10.1038/ncomms1600) / Nat. Commun. by P Gao (2011)
  38. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response. Nature 403, 281–283 (2000). (10.1038/35002022) / Nature by H Fu (2000)
  39. Salje, E. K. H., Wang, X., Ding, X. & Scott, J. F. Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink movements. Adv. Funct. Mater. 27, 1700367 (2017). (10.1002/adfm.201700367) / Adv. Funct. Mater. by EKH Salje (2017)
  40. Sui, F. et al. Atomic-level polarization reversal in sliding ferroelectric semiconductors. Nat. Commun. 15, 3799 (2024). (10.1038/s41467-024-48218-z) / Nat. Commun. by F Sui (2024)
  41. Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017). (10.1186/s40679-017-0042-5)
  42. Takamoto, S. et al. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 131, 2991 (2022). (10.1038/s41467-022-30687-9) / Nat. Commun. by S Takamoto (2022)
  43. Takamoto, S., Okanohara, D., Li, Q. J. & Li, J. Towards universal neural network interatomic potential. J. Mater. 9, 447–454 (2023). / J. Mater. by S Takamoto (2023)
  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  48. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). (10.1063/1.1329672) / J. Chem. Phys. by G Henkelman (2000)
Dates
Type When
Created 9 months, 2 weeks ago (Nov. 6, 2024, 12:05 p.m.)
Deposited 8 months, 3 weeks ago (Nov. 27, 2024, 8:09 a.m.)
Indexed 2 weeks ago (Aug. 6, 2025, 9:32 a.m.)
Issued 9 months, 2 weeks ago (Nov. 6, 2024)
Published 9 months, 2 weeks ago (Nov. 6, 2024)
Published Online 9 months, 2 weeks ago (Nov. 6, 2024)
Published Print 8 months, 3 weeks ago (Nov. 28, 2024)
Funders 0

None

@article{Modi_2024, title={Electrically driven long-range solid-state amorphization in ferroic In2Se3}, volume={635}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-024-08156-8}, DOI={10.1038/s41586-024-08156-8}, number={8040}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Modi, Gaurav and Parate, Shubham K. and Kwon, Choah and Meng, Andrew C. and Khandelwal, Utkarsh and Tullibilli, Anudeep and Horwath, James and Davies, Peter K. and Stach, Eric A. and Li, Ju and Nukala, Pavan and Agarwal, Ritesh}, year={2024}, month=nov, pages={847–853} }