Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Polshyn, H., Zhu, J., Kumar, M. A., Zhang, Y., Yang, F., Tschirhart, C. L., Serlin, M., Watanabe, K., Taniguchi, T., MacDonald, A. H., & Young, A. F. (2020). Electrical switching of magnetic order in an orbital Chern insulator. Nature, 588(7836), 66–70.

Authors 11
  1. H. Polshyn (first)
  2. J. Zhu (additional)
  3. M. A. Kumar (additional)
  4. Y. Zhang (additional)
  5. F. Yang (additional)
  6. C. L. Tschirhart (additional)
  7. M. Serlin (additional)
  8. K. Watanabe (additional)
  9. T. Taniguchi (additional)
  10. A. H. MacDonald (additional)
  11. A. F. Young (additional)
References 38 Referenced 261
  1. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015). (10.1038/nnano.2015.22) / Nat. Nanotechnol. by F Matsukura (2015)
  2. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018). (10.1038/s41563-018-0040-6) / Nat. Mater. by S Jiang (2018)
  3. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  4. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020). (10.1126/science.aay5533) / Science by M Serlin (2020)
  5. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); correction 581, E3 (2020). (10.1038/s41586-020-2049-7) / Nature by G Chen (2020)
  6. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). (10.1038/s41586-019-1695-0) / Nature by X Lu (2019)
  7. Xie, M. & MacDonald, A. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020). (10.1103/PhysRevLett.124.097601) / Phys. Rev. Lett. by M Xie (2020)
  8. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020). (10.1103/PhysRevLett.124.166601) / Phys. Rev. Lett. by N Bultinck (2020)
  9. Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: anomalous Hall effect and a lattice model. Phys. Rev. Res. 1, 033126 (2019). (10.1103/PhysRevResearch.1.033126) / Phys. Rev. Res. by Y-H Zhang (2019)
  10. Liu, J. & Dai, X. Theories for the correlated insulating states and quantum anomalous Hall phenomena in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1911.03760 (2020). (10.1103/PhysRevB.103.035427)
  11. Wu, F. & Das Sarma, S. Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 124, 046403 (2020). (10.1103/PhysRevLett.124.046403) / Phys. Rev. Lett. by F Wu (2020)
  12. Chatterjee, S., Bultinck, N. & Zaletel, M. P. Symmetry breaking and skyrmionic transport in twisted bilayer graphene. Phys. Rev. B 101, 165141 (2020). (10.1103/PhysRevB.101.165141) / Phys. Rev. B by S Chatterjee (2020)
  13. Repellin, C., Dong, Z., Zhang, Y.-H. & Senthil, T. Ferromagnetism in narrow bands of moiré superlattices. Phys. Rev. Lett. 124, 187601 (2020). (10.1103/PhysRevLett.124.187601) / Phys. Rev. Lett. by C Repellin (2020)
  14. Alavirad, Y. & Sau, J. D. Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1907.13633 (2019). (10.1103/PhysRevB.102.235123)
  15. Ma, Z. et al. Topological flat bands in twisted trilayer graphene. Preprint at https://arxiv.org/abs/1905.00622 (2019). (10.1016/j.scib.2020.10.004)
  16. Park, Y., Chittari, B. L. & Jung, J. Gate-tunable topological flat bands in twisted monolayer-bilayer graphene. Phys. Rev. B 102, 035411 (2020). (10.1103/PhysRevB.102.035411) / Phys. Rev. B by Y Park (2020)
  17. Rademaker, L., Protopopov, I. V. & Abanin, D. A. Topological flat bands and correlated states in twisted monolayer-bilayer graphene. Phys. Rev. Res. 2, 033150 (2020). (10.1103/PhysRevResearch.2.033150) / Phys. Rev. Res. by L Rademaker (2020)
  18. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). (10.1126/science.1234414) / Science by C-Z Chang (2013)
  19. Zhu, J., Su, J.-J. & MacDonald, A. H. The curious magnetic properties of orbital Chern insulators. Preprint at https://arxiv.org/abs/2001.05084 (2020).
  20. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988). (10.1103/PhysRevLett.61.2015) / Phys. Rev. Lett. by FDM Haldane (1988)
  21. Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015). (10.1073/pnas.1424760112) / Proc. Natl Acad. Sci. USA by JCW Song (2015)
  22. Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019). (10.1103/PhysRevB.99.075127) / Phys. Rev. B by Y-H Zhang (2019)
  23. Liu, J., Ma, Z., Gao, J. & Dai, X. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X 9, 031021 (2019). / Phys. Rev. X by J Liu (2019)
  24. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  25. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  26. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). (10.1038/s41567-018-0387-2) / Nat. Phys. by G Chen (2019)
  27. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). (10.1038/s41567-020-0825-9) / Nat. Phys. by C Shen (2020)
  28. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020). (10.1038/s41586-020-2458-7) / Nature by X Liu (2020)
  29. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020); correction 583, E27 (2020). (10.1038/s41586-020-2260-6) / Nature by Y Cao (2020)
  30. Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019). (10.1103/PhysRevLett.123.197702) / Phys. Rev. Lett. by GW Burg (2019)
  31. He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-1030-6 (2020). (10.1038/s41567-020-1030-6)
  32. Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C 15, L1299 (1982). (10.1088/0022-3719/15/36/006) / J. Phys. C by P Streda (1982)
  33. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Preprint at https://arxiv.org/abs/2006.08053 (2020).
  34. Chiba, D. et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys. Rev. Lett. 104, 106601 (2010). (10.1103/PhysRevLett.104.106601) / Phys. Rev. Lett. by D Chiba (2010)
  35. Zhang, S. et al. Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. Nano Lett. 20, 709–714 (2020). (10.1021/acs.nanolett.9b04555) / Nano Lett. by S Zhang (2020)
  36. Beekman, M., Heideman, C. L. & Johnson, D. C. Ferecrystals: non-epitaxial layered intergrowths. Semicond. Sci. Technol. 29, 064012 (2014). (10.1088/0268-1242/29/6/064012) / Semicond. Sci. Technol. by M Beekman (2014)
  37. Viola, G. & DiVincenzo, D. P. Hall effect gyrators and circulators. Phys. Rev. X 4, 021019 (2014). / Phys. Rev. X by G Viola (2014)
  38. Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018). (10.1073/pnas.1810003115) / Proc. Natl Acad. Sci. USA by B Lian (2018)
Dates
Type When
Created 4 years, 8 months ago (Nov. 23, 2020, 12:09 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6:08 p.m.)
Indexed 18 hours, 3 minutes ago (Aug. 20, 2025, 9:15 a.m.)
Issued 4 years, 8 months ago (Nov. 23, 2020)
Published 4 years, 8 months ago (Nov. 23, 2020)
Published Online 4 years, 8 months ago (Nov. 23, 2020)
Published Print 4 years, 8 months ago (Dec. 3, 2020)
Funders 0

None

@article{Polshyn_2020, title={Electrical switching of magnetic order in an orbital Chern insulator}, volume={588}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-020-2963-8}, DOI={10.1038/s41586-020-2963-8}, number={7836}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Polshyn, H. and Zhu, J. and Kumar, M. A. and Zhang, Y. and Yang, F. and Tschirhart, C. L. and Serlin, M. and Watanabe, K. and Taniguchi, T. and MacDonald, A. H. and Young, A. F.}, year={2020}, month=nov, pages={66–70} }