Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Uri, A., Grover, S., Cao, Y., Crosse, J. A., Bagani, K., Rodan-Legrain, D., Myasoedov, Y., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., & Zeldov, E. (2020). Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature, 581(7806), 47–52.

Authors 13
  1. A. Uri (first)
  2. S. Grover (additional)
  3. Y. Cao (additional)
  4. J. A. Crosse (additional)
  5. K. Bagani (additional)
  6. D. Rodan-Legrain (additional)
  7. Y. Myasoedov (additional)
  8. K. Watanabe (additional)
  9. T. Taniguchi (additional)
  10. P. Moon (additional)
  11. M. Koshino (additional)
  12. P. Jarillo-Herrero (additional)
  13. E. Zeldov (additional)
References 53 Referenced 328
  1. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  3. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  4. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2019). (10.1126/science.aay5533) / Science by M Serlin (2019)
  5. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  6. Tomarken, S. L. et al. Electronic compressibility of magic-angle graphene superlattices. Phys. Rev. Lett. 123, 046601 (2019). (10.1103/PhysRevLett.123.046601) / Phys. Rev. Lett. by SL Tomarken (2019)
  7. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). (10.1038/s41586-019-1695-0) / Nature by X Lu (2019)
  8. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013). (10.1038/nnano.2013.169) / Nat. Nanotechnol. by D Vasyukov (2013)
  9. Uri, A. et al. Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene. Nat. Phys. 16, 164–170 (2020). (10.1038/s41567-019-0713-3) / Nat. Phys. by A Uri (2020)
  10. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010). (10.1103/PhysRevB.82.121407) / Phys. Rev. B by E Suárez Morell (2010)
  11. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  12. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012). (10.1103/PhysRevB.86.155449) / Phys. Rev. B by JMB Lopes dos Santos (2012)
  13. Moon, P. & Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013). (10.1103/PhysRevB.87.205404) / Phys. Rev. B by P Moon (2013)
  14. Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017). (10.1103/PhysRevB.96.075311) / Phys. Rev. B by NNT Nam (2017)
  15. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  16. Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018). (10.1103/PhysRevLett.120.156405) / Phys. Rev. Lett. by L Huder (2018)
  17. Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019). (10.1103/PhysRevB.100.035448) / Phys. Rev. B by Z Bi (2019)
  18. Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010). (10.1038/nphys1463) / Nat. Phys. by G Li (2010)
  19. Brihuega, I. et al. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012). (10.1103/PhysRevLett.109.196802) / Phys. Rev. Lett. by I Brihuega (2012)
  20. Wong, D. et al. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015). (10.1103/PhysRevB.92.155409) / Phys. Rev. B by D Wong (2015)
  21. Jiang, Y. et al. Flat bands in buckled graphene superlattices. Preprint at https://arxiv.org/abs/1904.10147 (2019).
  22. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019). (10.1038/s41586-019-1431-9) / Nature by A Kerelsky (2019)
  23. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019). (10.1038/s41567-019-0606-5) / Nat. Phys. by Y Choi (2019)
  24. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019). (10.1038/s41586-019-1422-x) / Nature by Y Xie (2019)
  25. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013). (10.1073/pnas.1309394110) / Proc. Natl Acad. Sci. USA by JS Alden (2013)
  26. Lin, J. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013). (10.1021/nl4013979) / Nano Lett. by J Lin (2013)
  27. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014). (10.1038/nature12780) / Nature by B Butz (2014)
  28. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). (10.1103/PhysRevLett.117.116804) / Phys. Rev. Lett. by Y Cao (2016)
  29. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
  30. Landau Level Tomography of Magic Angle Twisted Bilayer Graphene (MATBG) (2019); www.weizmann.ac.il/condmat/superc/software/matbg.
  31. Hejazi, K., Liu, C. & Balents, L. Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019). (10.1103/PhysRevB.100.035115) / Phys. Rev. B by K Hejazi (2019)
  32. Zhang, Y. H., Po, H. C. & Senthil, T. Landau level degeneracy in twisted bilayer graphene: role of symmetry breaking. Phys. Rev. B 100, 125104 (2019). (10.1103/PhysRevB.100.125104) / Phys. Rev. B by YH Zhang (2019)
  33. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017). (10.1073/pnas.1620140114) / Proc. Natl Acad. Sci. USA by K Kim (2017)
  34. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
  35. Anahory, Y. et al. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale 12, 3174–3182 (2020). (10.1039/C9NR08578E) / Nanoscale by Y Anahory (2020)
  36. Huber, M. E. et al. DC SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. Appl. Supercond. 11, 1251–1256 (2001). (10.1109/77.919577) / IEEE Trans. Appl. Supercond. by ME Huber (2001)
  37. Finkler, A. et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012). (10.1063/1.4731656) / Rev. Sci. Instrum. by A Finkler (2012)
  38. Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010). (10.1021/nl100009r) / Nano Lett. by A Finkler (2010)
  39. Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015). (10.1126/sciadv.1500740) / Sci. Adv. by EO Lachman (2015)
  40. Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016). (10.1038/nature19843) / Nature by D Halbertal (2016)
  41. Kleinbaum, E. & Csáthy, G. A. Note: a transimpedance amplifier for remotely located quartz tuning forks. Rev. Sci. Instrum. 83, 126101 (2012). (10.1063/1.4769271) / Rev. Sci. Instrum. by E Kleinbaum (2012)
  42. Geller, M. R. & Vignale, G. Currents in the compressible and incompressible regions of the two-dimensional electron gas. Phys. Rev. B 50, 11714–11722 (1994). (10.1103/PhysRevB.50.11714) / Phys. Rev. B by MR Geller (1994)
  43. Kim, P. Graphene and relativistic quantum physics. In Dirac Matter (eds Duplantier B., Rivasseau V. & Fuchs J. N.) 1–23 (Birkhäuser, 2017). (10.1007/978-3-319-32536-1_1)
  44. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  45. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008). (10.1038/nphys781) / Nat. Phys. by J Martin (2008)
  46. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007). (10.1103/PhysRevLett.99.256802) / Phys. Rev. Lett. by JMB Lopes dos Santos (2007)
  47. Kindermann, M. & First, P. N. Local sublattice-symmetry breaking in rotationally faulted multilayer graphene. Phys. Rev. B 83, 045425 (2011). (10.1103/PhysRevB.83.045425) / Phys. Rev. B by M Kindermann (2011)
  48. Koshino, M. & Moon, P. Electronic properties of incommensurate atomic layers. J. Phys. Soc. Jpn. 84, 121001 (2015). (10.7566/JPSJ.84.121001) / J. Phys. Soc. Jpn. by M Koshino (2015)
  49. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018). / Phys. Rev. X by M Koshino (2018)
  50. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). (10.1103/RevModPhys.82.1959) / Rev. Mod. Phys. by D Xiao (2010)
  51. Bistritzer, R. & MacDonald, A. H. Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011). (10.1103/PhysRevB.84.035440) / Phys. Rev. B by R Bistritzer (2011)
  52. Moon, P. & Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012). (10.1103/PhysRevB.85.195458) / Phys. Rev. B by P Moon (2012)
  53. Mireles, F. & Schliemann, J. Energy spectrum and Landau levels in bilayer graphene with spin–orbit interaction. New J. Phys. 14, 093026 (2012). (10.1088/1367-2630/14/9/093026) / New J. Phys. by F Mireles (2012)
Dates
Type When
Created 5 years, 3 months ago (May 6, 2020, 12:04 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6:04 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 7, 2025, 5:10 a.m.)
Issued 5 years, 3 months ago (May 6, 2020)
Published 5 years, 3 months ago (May 6, 2020)
Published Online 5 years, 3 months ago (May 6, 2020)
Published Print 5 years, 3 months ago (May 7, 2020)
Funders 0

None

@article{Uri_2020, title={Mapping the twist-angle disorder and Landau levels in magic-angle graphene}, volume={581}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-020-2255-3}, DOI={10.1038/s41586-020-2255-3}, number={7806}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Uri, A. and Grover, S. and Cao, Y. and Crosse, J. A. and Bagani, K. and Rodan-Legrain, D. and Myasoedov, Y. and Watanabe, K. and Taniguchi, T. and Moon, P. and Koshino, M. and Jarillo-Herrero, P. and Zeldov, E.}, year={2020}, month=may, pages={47–52} }