Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Xie, Y., Lian, B., Jäck, B., Liu, X., Chiu, C.-L., Watanabe, K., Taniguchi, T., Bernevig, B. A., & Yazdani, A. (2019). Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 572(7767), 101–105.

Authors 9
  1. Yonglong Xie (first)
  2. Biao Lian (additional)
  3. Berthold Jäck (additional)
  4. Xiaomeng Liu (additional)
  5. Cheng-Li Chiu (additional)
  6. Kenji Watanabe (additional)
  7. Takashi Taniguchi (additional)
  8. B. Andrei Bernevig (additional)
  9. Ali Yazdani (additional)
References 31 Referenced 559
  1. Cao, Y. et al. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  3. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006). (10.1103/RevModPhys.78.17) / Rev. Mod. Phys. by PA Lee (2006)
  4. Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010). (10.1021/nl902948m) / Nano Lett. by G Trambly de Laissardière (2010)
  5. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  6. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010). (10.1038/nphys1463) / Nat. Phys. by G Li (2010)
  7. Brihuega, I. et al. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012). (10.1103/PhysRevLett.109.196802) / Phys. Rev. Lett. by I Brihuega (2012)
  8. Wong, D. et al. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015). (10.1103/PhysRevB.92.155409) / Phys. Rev. B by D Wong (2015)
  9. Kerelsky, A. et al. Magic angle spectroscopy. Preprint at https://arxiv.org/abs/1812.08776 (2018).
  10. Choi, Y. et al. Imaging electronic correlations in twisted bilayer graphene near the magic angle. Preprint at https://arxiv.org/abs/1901.02997 (2019).
  11. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  12. Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Preprint at https://arxiv.org/abs/1903.06513 (2019).
  13. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Preprint at http://arxiv.org/abs/1901.03520 (2019).
  14. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Preprint at https://arxiv.org/abs/1901.03710 (2019).
  15. Polshyn, H. et al. Phonon scattering dominated electron transport in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1902.00763 (2019).
  16. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018). / Phys. Rev. X by M Koshino (2018)
  17. Kang, J. & Vafek, O. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018). / Phys. Rev. X by J Kang (2018)
  18. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). / Phys. Rev. X by HC Po (2018)
  19. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon driven superconductor. Phys. Rev. Lett. 122, 257002 (2019). (10.1103/PhysRevLett.122.257002) / Phys. Rev. Lett. by B Lian (2019)
  20. Xie, M. & MacDonald, A. H. On the nature of the correlated insulator states in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1812.04213 (2019).
  21. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). (10.1103/PhysRevLett.117.116804) / Phys. Rev. Lett. by Y Cao (2016)
  22. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
  23. Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017). (10.1103/PhysRevB.96.075311) / Phys. Rev. B by NNT Nam (2017)
  24. Yoo, H. et al. Atomic reconstruction at van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  25. Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat band by strain. Preprint at https://arxiv.org/abs/1902.10146 (2019). (10.1103/PhysRevB.100.035448)
  26. Efros, A. L. Coulomb gap in disordered insulators. J. Phys. C 9, 2021 (1976). (10.1088/0022-3719/9/11/012) / J. Phys. C by AL Efros (1976)
  27. Ashoori, R. C., Lebens, J. A., Bigelow, N. P. & Silsbee, R. H. Equilibrium tunneling from the two-dimensional electron gas in GaAs: evidence for a magnetic-field-induced energy gap. Phys. Rev. Lett. 64, 681–684 (1990). (10.1103/PhysRevLett.64.681) / Phys. Rev. Lett. by RC Ashoori (1990)
  28. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Coulomb barrier to tunneling between parallel two-dimensional electron systems. Phys. Rev. Lett. 69, 3804–3807 (1992). (10.1103/PhysRevLett.69.3804) / Phys. Rev. Lett. by JP Eisenstein (1992)
  29. Feldman, B. E. et al. Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354, 316 (2016). (10.1126/science.aag1715) / Science by BE Feldman (2016)
  30. Randeria, M. T. et al. Interacting multi-channel topological boundary modes in a quantum Hall valley system. Nature 566, 363–367 (2019). (10.1038/s41586-019-0913-0) / Nature by MT Randeria (2019)
  31. Ochi, M., Koshino, M. & Kuroki, K. Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions. Phys. Rev. B 98, 081102(R) (2018). (10.1103/PhysRevB.98.081102) / Phys. Rev. B by M Ochi (2018)
Dates
Type When
Created 6 years ago (July 31, 2019, 2:03 p.m.)
Deposited 9 months ago (Nov. 28, 2024, 4:09 a.m.)
Indexed 2 days, 3 hours ago (Aug. 29, 2025, 6:06 a.m.)
Issued 6 years, 1 month ago (July 31, 2019)
Published 6 years, 1 month ago (July 31, 2019)
Published Online 6 years, 1 month ago (July 31, 2019)
Published Print 6 years ago (Aug. 1, 2019)
Funders 0

None

@article{Xie_2019, title={Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene}, volume={572}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-019-1422-x}, DOI={10.1038/s41586-019-1422-x}, number={7767}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Xie, Yonglong and Lian, Biao and Jäck, Berthold and Liu, Xiaomeng and Chiu, Cheng-Li and Watanabe, Kenji and Taniguchi, Takashi and Bernevig, B. Andrei and Yazdani, Ali}, year={2019}, month=jul, pages={101–105} }