Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Das, S., Tang, Y. L., Hong, Z., Gonçalves, M. A. P., McCarter, M. R., Klewe, C., Nguyen, K. X., Gómez-Ortiz, F., Shafer, P., Arenholz, E., Stoica, V. A., Hsu, S.-L., Wang, B., Ophus, C., Liu, J. F., Nelson, C. T., Saremi, S., Prasad, B., Mei, A. B., … Ramesh, R. (2019). Observation of room-temperature polar skyrmions. Nature, 568(7752), 368–372.

Authors 27
  1. S. Das (first)
  2. Y. L. Tang (additional)
  3. Z. Hong (additional)
  4. M. A. P. Gonçalves (additional)
  5. M. R. McCarter (additional)
  6. C. Klewe (additional)
  7. K. X. Nguyen (additional)
  8. F. Gómez-Ortiz (additional)
  9. P. Shafer (additional)
  10. E. Arenholz (additional)
  11. V. A. Stoica (additional)
  12. S.-L. Hsu (additional)
  13. B. Wang (additional)
  14. C. Ophus (additional)
  15. J. F. Liu (additional)
  16. C. T. Nelson (additional)
  17. S. Saremi (additional)
  18. B. Prasad (additional)
  19. A. B. Mei (additional)
  20. D. G. Schlom (additional)
  21. J. Íñiguez (additional)
  22. P. García-Fernández (additional)
  23. D. A. Muller (additional)
  24. L. Q. Chen (additional)
  25. J. Junquera (additional)
  26. L. W. Martin (additional)
  27. R. Ramesh (additional)
References 47 Referenced 608
  1. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016); corrigendum 534, 138 (2016). (10.1038/nature16463) / Nature by AK Yadav (2016)
  2. Damodaran, A. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017). (10.1038/nmat4951) / Nat. Mater. by A Damodaran (2017)
  3. Shafer, P. et al. Emergent chirality in polar vortex superlattices. Proc. Natl Acad. Sci. USA 115, 915 (2018). (10.1073/pnas.1711652115) / Proc. Natl Acad. Sci. USA by P Shafer (2018)
  4. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006). (10.1038/nature05056) / Nature by UK Rößler (2006)
  5. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009). (10.1126/science.1166767) / Science by S Mühlbauer (2009)
  6. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013) (10.1038/nnano.2013.29) / Nat. Nanotechnol. by A Fert (2013)
  7. Woo, S. et al. Spin–orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nat. Commun. 8, 15573 (2017). (10.1038/ncomms15573) / Nat. Commun. by S Woo (2017)
  8. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014). (10.1038/srep06784) / Sci. Rep. by R Tomasello (2014)
  9. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190 (2008). (10.1126/science.1145799) / Science by SSP Parkin (2008)
  10. Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017). (10.1038/ncomms15768) / Nat. Commun. by S Cherifi-Hertel (2017)
  11. Lee, D. et al. Mixed Bloch–Néel–Ising character of 180° ferroelectric domain walls. Phys. Rev. B 80, 060102 (2009). (10.1103/PhysRevB.80.060102) / Phys. Rev. B by D Lee (2009)
  12. Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017). (10.1002/adma.201702375) / Adv. Mater. by Q Zhang (2017)
  13. Lai, B. K. et al. Electric-field-induced domain evolution in ferroelectric ultrathin films. Phys. Rev. Lett. 96, 137602 (2006). (10.1103/PhysRevLett.96.137602) / Phys. Rev. Lett. by BK Lai (2006)
  14. Nahas, Y. et al. Discovery of stable skyrmionic states in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015). (10.1038/ncomms9542) / Nat. Commun. by Y Nahas (2015)
  15. Hong, J., Catalan, G., Fang, D. N., Artacho, E. & Scott, J. F. Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010). (10.1103/PhysRevB.81.172101) / Phys. Rev. B by J Hong (2010)
  16. Gregg, J. M. Exotic domain states in ferroelectrics: searching for vortices and skyrmions. Ferroelectrics 433, 74–87 (2012). (10.1080/00150193.2012.678131) / Ferroelectrics by JM Gregg (2012)
  17. Thorner, G. et al. Axial hypertoroidal moment in a ferroelectric nanotorus: a way to switch local polarization. Phys. Rev. B 89, 220103 (2014). (10.1103/PhysRevB.89.220103) / Phys. Rev. B by G Thorner (2014)
  18. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004). (10.1126/science.1098252) / Science by DD Fong (2004)
  19. García-Fernández, P., Wojdeł, J. C., Íñiguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016). (10.1103/PhysRevB.93.195137) / Phys. Rev. B by P García-Fernández (2016)
  20. Mermin, N. D. Topological theory of defects. Rev. Mod. Phys. 51, 591–648 (1979). (10.1103/RevModPhys.51.591) / Rev. Mod. Phys. by ND Mermin (1979)
  21. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016). (10.1017/S1431927615015664) / Microsc. Microanal. by MW Tate (2016)
  22. Nelson, C. T. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011). (10.1021/nl1041808) / Nano Lett. by CT Nelson (2011)
  23. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010). (10.1038/nature09124) / Nature by XZ Yu (2010)
  24. Zuo, J. M. & Spence, J. C. H. in Electron Microdiffraction Ch. 4 (Plenum Press, New York, 1993). / Electron Microdiffraction by JM Zuo (1993)
  25. Kirkland, E. J. Computation in electron microscopy. Acta Crystallogr. A 72, 1–27 (2016). (10.1107/S205327331501757X) / Acta Crystallogr. A by EJ Kirkland (2016)
  26. Kézsmarki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015). (10.1038/nmat4402) / Nat. Mater. by I Kézsmarki (2015)
  27. Lovesey, S. W. & van der Laan, G. Resonant X-ray diffraction from chiral electric-polarization structures. Phys. Rev. B 98, 155410 (2018). (10.1103/PhysRevB.98.155410) / Phys. Rev. B by SW Lovesey (2018)
  28. Lim, L.-K. & Moessner, R. Pseudospin vortex ring with a nodal line in three dimensions. Phys. Rev. Lett. 118, 016401 (2017). (10.1103/PhysRevLett.118.016401) / Phys. Rev. Lett. by L-K Lim (2017)
  29. Rayfield, G. W. & Reif, F. Quantized vortex rings in superfluid helium. Phys. Rev. 137, AB4 (1965). (10.1103/PhysRev.137.AB4.6) / Phys. Rev. by GW Rayfield (1965)
  30. Eto, M., Hirono, Y. Nitta, M. and Yasui, S. Vortices and other topological solitons solutions in dense quark matter. Prog. Theor. Exp. Phys. 2014, 012D01 (2014). (10.1093/ptep/ptt095) / Prog.Theor. Exp. Phys. by M Eto (2014)
  31. Ruostekoski, J. J. & Anglin, J. R. Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Phys. Rev. Lett. 86, 3934–3937 (2001). (10.1103/PhysRevLett.86.3934) / Phys. Rev. Lett. by JJ Ruostekoski (2001)
  32. Lee, W. et al. Synthetic electromagnetic knot in a three-dimensional skyrmion. Sci. Adv. 4, eaao3820 (2018). (10.1126/sciadv.aao3820) / Sci. Adv. by W Lee (2018)
  33. Rybakov, F. N., Borisov, A. B. & Bogdanov, A. N. Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys. Rev. B 87, 094424 (2013). (10.1103/PhysRevB.87.094424) / Phys. Rev. B by FN Rybakov (2013)
  34. Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019). (10.1038/s41586-018-0855-y) / Nature by AK Yadav (2019)
  35. Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008). (10.1111/j.1551-2916.2008.02413.x) / J. Am. Ceram. Soc. by L-Q Chen (2008)
  36. Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017). (10.1021/acs.nanolett.6b04875) / Nano Lett. by Z Hong (2017)
  37. Li, Y. L. et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002). (10.1016/S1359-6454(01)00360-3) / Acta Mater. by YL Li (2002)
  38. Li, Y. L., Hu, S. Y. & Liu, Z. K. & Chen, L.-Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002). (10.1063/1.1492025) / Appl. Phys. Lett. by YL Li (2002)
  39. Haun, M. J. et al. Thermodynamic theory of PbTiO3. J. Appl. Phys. 62, 3331–3338 (1987). (10.1063/1.339293) / J. Appl. Phys. by MJ Haun (1987)
  40. Sheng, G. et al. A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96, 232902 (2010). (10.1063/1.3442915) / Appl. Phys. Lett. by G Sheng (2010)
  41. Chen, L.-Q. & Shen, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998). (10.1016/S0010-4655(97)00115-X) / Comput. Phys. Commun. by L-Q Chen (1998)
  42. Wojdeł, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Íñiguez, J. First- principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013). (10.1088/0953-8984/25/30/305401) / J. Phys. Condens. Matter by JC Wojdeł (2013)
  43. Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first-principles. Phys. Rev. Lett. 112, 247603 (2014). (10.1103/PhysRevLett.112.247603) / Phys. Rev. Lett. by JC Wojdeł (2014)
  44. Berg, B. & Lüscher, M. Definition and statistical distributions of a topological number in the lattice O(3) σ-model. Nucl. Phys. B 190, 412–424 (1981). (10.1016/0550-3213(81)90568-X) / Nucl. Phys. B by B Berg (1981)
  45. Dürr, H. A. et al. Chiral magnetic domain structures in ultrathin FePd films. Science 284, 2166–2168 (1999). (10.1126/science.284.5423.2166) / Science by HA Dürr (1999)
  46. Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017). (10.1016/j.physrep.2017.08.001) / Phys. Rep. by W Jiang (2017)
  47. Bogatyrëv, A. B. et al. What makes magnetic skyrmions different from magnetic bubbles? J. Magn. Magn. Mater. 465, 743–746 (2018). (10.1016/j.jmmm.2018.06.058) / J. Magn. Magn. Mater. by AB Bogatyrëv (2018)
Dates
Type When
Created 6 years, 4 months ago (April 17, 2019, 2:06 p.m.)
Deposited 8 months, 3 weeks ago (Nov. 27, 2024, 10:20 p.m.)
Indexed 1 week, 3 days ago (Aug. 12, 2025, 6:21 p.m.)
Issued 6 years, 4 months ago (April 17, 2019)
Published 6 years, 4 months ago (April 17, 2019)
Published Online 6 years, 4 months ago (April 17, 2019)
Published Print 6 years, 4 months ago (April 18, 2019)
Funders 0

None

@article{Das_2019, title={Observation of room-temperature polar skyrmions}, volume={568}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-019-1092-8}, DOI={10.1038/s41586-019-1092-8}, number={7752}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Das, S. and Tang, Y. L. and Hong, Z. and Gonçalves, M. A. P. and McCarter, M. R. and Klewe, C. and Nguyen, K. X. and Gómez-Ortiz, F. and Shafer, P. and Arenholz, E. and Stoica, V. A. and Hsu, S.-L. and Wang, B. and Ophus, C. and Liu, J. F. and Nelson, C. T. and Saremi, S. and Prasad, B. and Mei, A. B. and Schlom, D. G. and Íñiguez, J. and García-Fernández, P. and Muller, D. A. and Chen, L. Q. and Junquera, J. and Martin, L. W. and Ramesh, R.}, year={2019}, month=apr, pages={368–372} }