Bibliography
Yadav, A. K., Nguyen, K. X., Hong, Z., GarcÃa-Fernández, P., Aguado-Puente, P., Nelson, C. T., Das, S., Prasad, B., Kwon, D., Cheema, S., Khan, A. I., Hu, C., Ãñiguez, J., Junquera, J., Chen, L.-Q., Muller, D. A., Ramesh, R., & Salahuddin, S. (2019). Spatially resolved steady-state negative capacitance. Nature, 565(7740), 468â471.
Authors
18
- Ajay K. Yadav (first)
- Kayla X. Nguyen (additional)
- Zijian Hong (additional)
- Pablo García-Fernández (additional)
- Pablo Aguado-Puente (additional)
- Christopher T. Nelson (additional)
- Sujit Das (additional)
- Bhagwati Prasad (additional)
- Daewoong Kwon (additional)
- Suraj Cheema (additional)
- Asif I. Khan (additional)
- Chenming Hu (additional)
- Jorge Íñiguez (additional)
- Javier Junquera (additional)
- Long-Qing Chen (additional)
- David A. Muller (additional)
- Ramamoorthy Ramesh (additional)
- Sayeef Salahuddin (additional)
References
50
Referenced
332
-
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).
(
10.1093/acprof:oso/9780198507789.001.0001
) / Principles and Applications of Ferroelectrics and Related Materials by ME Lines (2001) -
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
(
10.1021/nl071804g
) / Nano Lett. by S Salahuddin (2008) -
Salahuddin, S. & Datta, S. Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? In 2008 IEEE International Electron Devices Meeting (IEDM) 1–4 (2008).
(
10.1109/IEDM.2008.4796789
) -
Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).
(
10.1063/1.3634072
) / Appl. Phys. Lett. by AI Khan (2011) -
Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).
(
10.1126/science.1187597
) / Science by TN Theis (2010) -
Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).
(
10.1021/nl502691u
) / Nano Lett. by W Gao (2014) -
Appleby, D. J. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).
(
10.1021/nl5017255
) / Nano Lett. by DJ Appleby (2014) -
Rusu, A., Salvatore, G., Jiménez, D. & Ionescu, A. M. Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60mv/decade subthreshold swing and internal voltage amplification. In 2010 IEEE International Electron Devices Meeting (IEDM) 16.3.1–16.3.4 (2010).
(
10.1109/IEDM.2010.5703374
) -
Li, K.-S. et al. Sub-60mv-swing negative-capacitance finFET without hysteresis. In 2015 IEEE International Electron Devices Meeting (IEDM) 22.6.1–22.6.4 (2015).
(
10.1109/IEDM.2015.7409760
) -
Krivokapic, Z. et al. 14nm ferroelectric finFET technology with steep subthreshold slope for ultra low power applications. In 2017 IEEE International Electron Devices Meeting (IEDM) 15.1.1–15.1.4 (2017).
(
10.1109/IEDM.2017.8268393
) -
Jo, J. & Shin, C. Negative capacitance field effect transistor with hysteresis-free sub-60-mv/decade switching. IEEE Electron Device Lett. 37, 245–248 (2016).
(
10.1109/LED.2016.2523681
) / IEEE Electron Device Lett. by J Jo (2016) -
Kwon, D. et al. Improved subthreshold swing and short channel effect in FDSOI n-channel negative capacitance field effect transistors. IEEE Electron Device Lett. 39, 300–303 (2018).
(
10.1109/LED.2017.2787063
) / IEEE Electron Device Lett. by D Kwon (2018) -
Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).
(
10.1038/nmat4148
) / Nat. Mater. by AI Khan (2015) -
Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).
(
10.1038/nature17659
) / Nature by P Zubko (2016) -
Cano, A. & Jiménez, D. Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97, 133509 (2010).
(
10.1063/1.3494533
) / Appl. Phys. Lett. by A Cano (2010) -
Karpov, D. et al. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field. Nat. Commun. 8, 280 (2017).
(
10.1038/s41467-017-00318-9
) / Nat. Commun. by D Karpov (2017) -
Wang, J., Kamlah, M., Zhang, T.-Y., Li, Y. & Chen, L.-Q. Size-dependent polarization distribution in ferroelectric nanostructures: phase field simulations. Appl. Phys. Lett. 92, 162905 (2008).
(
10.1063/1.2917715
) / Appl. Phys. Lett. by J Wang (2008) -
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016); corrigendum 534, 138 (2016).
(
10.1038/nature16463
) / Nature by AK Yadav (2016) -
Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).
(
10.1021/acs.nanolett.6b04875
) / Nano Lett. by Z Hong (2017) -
Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).
(
10.1038/nmat4951
) / Nat. Mater. by AR Damodaran (2017) -
Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506 (2008).
(
10.1126/science.1152800
) / Science by KW Urban (2008) -
Jia, C.-L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).
(
10.1038/nmat1808
) / Nat. Mater. by C-L Jia (2007) -
Nguyen, K. X. et al. Reconstruction of polarization vortices by diffraction mapping of ferroelectric PbTiO3/SrTiO3 superlattice using a high dynamic range pixelated detector. Microsc. Microanal. 22, 472–473 (2016).
(
10.1017/S1431927616003214
) / Microsc. Microanal. by KX Nguyen (2016) -
Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).
(
10.1021/nl1041808
) / Nano Lett. by CT Nelson (2011) - Watanabe, Y. in Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications (eds Okuyama, M. & Ishibashi, Y.) 177–199 (Springer, Berlin, 2005).
-
Qi, Y. et al. Coexistence of ferroelectric vortex domains and charged domain walls in epitaxial BiFeO3 film on (110)O GdScO3 substrate. J. Appl. Phys. 111, 104117 (2012).
(
10.1063/1.4722253
) / J. Appl. Phys. by Y Qi (2012) -
Lee, M. H. et al. Hidden antipolar order parameter and entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Phys. Rev. Lett. 119, 157601 (2017).
(
10.1103/PhysRevLett.119.157601
) / Phys. Rev. Lett. by MH Lee (2017) -
Zhang, Q. et al. Direct observation of multiferroic vortex domains in YMnO3. Sci. Rep. 3, 2741 (2013).
(
10.1038/srep02741
) / Sci. Rep. by Q Zhang (2013) -
Gruverman, A. et al. Vortex ferroelectric domains. J. Phys. Condens. Matter 20, 342201 (2008).
(
10.1088/0953-8984/20/34/342201
) / J. Phys. Condens. Matter by A Gruverman (2008) -
Sluka, T., Mokry, P. & Setter, N. Static negative capacitance of a ferroelectric nano-domain nucleus. Appl. Phys. Lett. 111, 152902 (2017).
(
10.1063/1.4989391
) / Appl. Phys. Lett. by T Sluka (2017) -
Lee, D. et al. Mixed Bloch-Néel-Ising character of 180 ferroelectric domain walls. Phys. Rev. B 80, 060102 (2009).
(
10.1103/PhysRevB.80.060102
) / Phys. Rev. B by D Lee (2009) -
Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732 (2008).
(
10.1038/nature06817
) / Nature by E Bousquet (2008) -
Chang, S. C., Avci, U. E., Nikonov, D. E. & Young, I. A. A thermodynamic perspective of negative-capacitance field-effect transistors. IEEE J. Explor. Solid-State Comput. Devices Circuits 3, 56–64 (2017).
(
10.1109/JXCDC.2017.2750108
) / IEEE J. Explor. Solid-State Comput. Devices Circuits by SC Chang (2017) - Kittel, C. Introduction to Solid State Physics (Wiley, Hoboken, 1966). / Introduction to Solid State Physics by C Kittel (1966)
-
Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).
(
10.1111/j.1551-2916.2008.02413.x
) / J. Am. Ceram. Soc. by L-Q Chen (2008) -
Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002).
(
10.1016/S1359-6454(01)00360-3
) / Acta Mater. by YL Li (2002) -
Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998).
(
10.1016/S0010-4655(97)00115-X
) / Comput. Phys. Commun. by LQ Chen (1998) -
Tagantsev, A. K. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics 375, 19–27 (2008).
(
10.1080/00150190802437746
) / Ferroelectrics by AK Tagantsev (2008) -
Yue, Z. & Woo, C. H. Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009).
(
10.1088/0957-4484/20/7/075401
) / Nanotechnology by Z Yue (2009) -
Tagantsev, A. K. & Gerra, G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607 (2006).
(
10.1063/1.2337009
) / J. Appl. Phys. by AK Tagantsev (2006) -
Wojdeł, J. C., Hermet, P., Ljunberg, M. P., Ghosez, Ph. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).
(
10.1088/0953-8984/25/30/305401
) / J. Phys. Condens. Matter by JC Wojdeł (2013) -
García-Fernández, P., Wojdeł, J. C., Íñiguez, J. & Junquera, J. Second-principles method including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).
(
10.1103/PhysRevB.93.195137
) / Phys. Rev. B by P García-Fernández (2016) -
Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).
(
10.1073/pnas.1711652115
) / Proc. Natl Acad. Sci. USA by P Shafer (2018) - Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1989). / Electrodynamics of Continuous Media by LD Landau (1989)
-
Stengel, M., Spaldin, N. A. & Vanderbilt, D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys. 5, 304–308 (2009).
(
10.1038/nphys1185
) / Nat. Phys. by M Stengel (2009) -
Stengel, M., Vanderbilt, D. & Spaldin, N. A. First-principles modeling of ferroelectric capacitors via constrained displacement field calculations. Phys. Rev. B 80, 224110 (2009).
(
10.1103/PhysRevB.80.224110
) / Phys. Rev. B by M Stengel (2009) -
Giustino, F. & Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104 (2005).
(
10.1103/PhysRevB.71.144104
) / Phys. Rev. B by F Giustino (2005) -
Bhide, V. G., Hegde, M. S. & Deshmukh, K. G. Ferroelectric properties of lead titanate. J. Am. Ceram. Soc. 51, 565–568 (1968).
(
10.1111/j.1151-2916.1968.tb13323.x
) / J. Am. Ceram. Soc. by VG Bhide (1968) - Chaudhari, V. A. & Bichile, G. K. Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics. Smart Mater. Res. 2013, 147524 (2013). / Smart Mater. Res. by VA Chaudhari (2013)
-
Sidorkin, S. et al. Dispersion of dielectric permittivity in thin ferroelectric lead titanate films. Solid State Phenom. 115, 233-238 (2006).
(
10.4028/www.scientific.net/SSP.115.233
) / Solid State Phenom. by S Sidorkin (2006)
Dates
Type | When |
---|---|
Created | 6 years, 7 months ago (Jan. 11, 2019, 11:18 a.m.) |
Deposited | 2 years, 3 months ago (May 20, 2023, 5:52 p.m.) |
Indexed | 1 day, 21 hours ago (Aug. 19, 2025, 6:03 a.m.) |
Issued | 6 years, 7 months ago (Jan. 1, 2019) |
Published | 6 years, 7 months ago (Jan. 1, 2019) |
Published Online | 6 years, 7 months ago (Jan. 14, 2019) |
Published Print | 6 years, 7 months ago (Jan. 1, 2019) |
@article{Yadav_2019, title={Spatially resolved steady-state negative capacitance}, volume={565}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0855-y}, DOI={10.1038/s41586-018-0855-y}, number={7740}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Yadav, Ajay K. and Nguyen, Kayla X. and Hong, Zijian and García-Fernández, Pablo and Aguado-Puente, Pablo and Nelson, Christopher T. and Das, Sujit and Prasad, Bhagwati and Kwon, Daewoong and Cheema, Suraj and Khan, Asif I. and Hu, Chenming and Íñiguez, Jorge and Junquera, Javier and Chen, Long-Qing and Muller, David A. and Ramesh, Ramamoorthy and Salahuddin, Sayeef}, year={2019}, month=jan, pages={468–471} }