Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Ma, W., Alonso-González, P., Li, S., Nikitin, A. Y., Yuan, J., Martín-Sánchez, J., Taboada-Gutiérrez, J., Amenabar, I., Li, P., Vélez, S., Tollan, C., Dai, Z., Zhang, Y., Sriram, S., Kalantar-Zadeh, K., Lee, S.-T., Hillenbrand, R., & Bao, Q. (2018). In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562(7728), 557–562.

Authors 18
  1. Weiliang Ma (first)
  2. Pablo Alonso-González (additional)
  3. Shaojuan Li (additional)
  4. Alexey Y. Nikitin (additional)
  5. Jian Yuan (additional)
  6. Javier Martín-Sánchez (additional)
  7. Javier Taboada-Gutiérrez (additional)
  8. Iban Amenabar (additional)
  9. Peining Li (additional)
  10. Saül Vélez (additional)
  11. Christopher Tollan (additional)
  12. Zhigao Dai (additional)
  13. Yupeng Zhang (additional)
  14. Sharath Sriram (additional)
  15. Kourosh Kalantar-Zadeh (additional)
  16. Shuit-Tong Lee (additional)
  17. Rainer Hillenbrand (additional)
  18. Qiaoliang Bao (additional)
References 37 Referenced 682
  1. Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016). (10.1126/science.aag1992) / Science by D Basov (2016)
  2. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). (10.1038/nmat4792) / Nat. Mater. by T Low (2017)
  3. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). (10.1038/nature11253) / Nature by Z Fei (2012)
  4. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). (10.1038/nature11254) / Nature by J Chen (2012)
  5. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). (10.1126/science.1246833) / Science by S Dai (2014)
  6. Chakraborty, S. et al. Gain modulation by graphene plasmons in aperiodic lattice lasers. Science 351, 246 (2016). (10.1126/science.aad2930) / Science by S Chakraborty (2016)
  7. Cai, X. et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 15, 4295–4302 (2015). (10.1021/acs.nanolett.5b00137) / Nano Lett. by X Cai (2015)
  8. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). (10.1126/science.aab2051) / Science by D Rodrigo (2015)
  9. Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014). (10.1103/PhysRevLett.113.106802) / Phys. Rev. Lett. by T Low (2014)
  10. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015). (10.1038/nmat4169) / Nat. Mater. by A Woessner (2015)
  11. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018). (10.1038/nmat5047) / Nat. Mater. by AJ Giles (2018)
  12. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). (10.1038/s41586-018-0136-9) / Nature by GX Ni (2018)
  13. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007). (10.1038/nmat2033) / Nat. Mater. by AJ Hoffman (2007)
  14. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007). (10.1126/science.1137368) / Science by Z Liu (2007)
  15. Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005). (10.1103/PhysRevB.71.201101) / Phys. Rev. B by VA Podolskiy (2005)
  16. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2012). (10.1088/2040-8978/14/6/063001) / J. Opt. by CL Cortes (2012)
  17. Takayama, O., Bogdanov, A. A. & Lavrinenko, A. V. Photonic surface waves on metamaterial interfaces. J. Phys. Condens. Matter 29, 463001 (2017). (10.1088/1361-648X/aa8bdd) / J. Phys. Condens. Matter by O Takayama (2017)
  18. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014). (10.1038/ncomms6221) / Nat. Commun. by JD Caldwell (2014)
  19. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015). (10.1038/nphoton.2015.166) / Nat. Photon. by E Yoxall (2015)
  20. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015). (10.1038/ncomms8507) / Nat. Commun. by P Li (2015)
  21. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015). (10.1038/ncomms7963) / Nat. Commun. by S Dai (2015)
  22. Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015). (10.1103/PhysRevLett.114.233901) / Phys. Rev. Lett. by JS Gomez-Diaz (2015)
  23. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018). (10.1126/science.aaq1704) / Science by P Li (2018)
  24. Song, J. C. W. & Rudner, M. S. Fermi arc plasmons in Weyl semimetals. Phys. Rev. B 96, 205443 (2017). (10.1103/PhysRevB.96.205443) / Phys. Rev. B by JCW Song (2017)
  25. Mazor, Y. & Steinberg, B. Z. Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding. Phys. Rev. B 86, 045120 (2012). (10.1103/PhysRevB.86.045120) / Phys. Rev. B by Y Mazor (2012)
  26. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). (10.1126/science.1232009) / Science by AV Kildishev (2013)
  27. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018). (10.1002/adma.201705318) / Adv. Mater. by Z Zheng (2018)
  28. de Castro, I. A. et al. Molybdenum oxides — from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017). (10.1002/adma.201701619) / Adv. Mater. by IA de Castro (2017)
  29. Lajaunie, L., Boucher, F., Dessapt, R. & Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 88, 115141 (2013). (10.1103/PhysRevB.88.115141) / Phys. Rev. B by L Lajaunie (2013)
  30. Py, M. A., Schmid, P. E. & Vallin, J. T. Raman scattering and structural properties of MoO3. Nuovo Cimento B 38, 271–279 (1977). (10.1007/BF02723496) / Nuovo Cimento B by MA Py (1977)
  31. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015). (10.1515/nanoph-2014-0003) / Nanophotonics by JD Caldwell (2015)
  32. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017). (10.1021/acs.nanolett.7b01587) / Nano Lett. by S Dai (2017)
  33. Hu, F. et al. Imaging the localized plasmon resonance modes in graphene nanoribbons. Nano Lett. 17, 5423–5428 (2017). (10.1021/acs.nanolett.7b02029) / Nano Lett. by F Hu (2017)
  34. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006). (10.1063/1.2348781) / Appl. Phys. Lett. by N Ocelic (2006)
  35. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011). (10.1038/nmat3006) / Nat. Mater. by F Huth (2011)
  36. Nikitin, A. Y. in World Scientific Handbook of Metamaterials and Plasmonics 307–338 (World Scientific Series in Nanoscience and Nanotechnology, World Scientific, Singapore, 2017). (10.1142/9789813228726_0008)
  37. Tilley, D. R. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Publishing Co., Amsterdam, 1982). / Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces by DR Tilley (1982)
Dates
Type When
Created 6 years, 10 months ago (Oct. 16, 2018, 8:09 a.m.)
Deposited 9 months ago (Nov. 27, 2024, 3:04 p.m.)
Indexed 1 day, 15 hours ago (Aug. 31, 2025, 6:18 a.m.)
Issued 6 years, 10 months ago (Oct. 24, 2018)
Published 6 years, 10 months ago (Oct. 24, 2018)
Published Online 6 years, 10 months ago (Oct. 24, 2018)
Published Print 6 years, 10 months ago (Oct. 25, 2018)
Funders 0

None

@article{Ma_2018, title={In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal}, volume={562}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0618-9}, DOI={10.1038/s41586-018-0618-9}, number={7728}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Ma, Weiliang and Alonso-González, Pablo and Li, Shaojuan and Nikitin, Alexey Y. and Yuan, Jian and Martín-Sánchez, Javier and Taboada-Gutiérrez, Javier and Amenabar, Iban and Li, Peining and Vélez, Saül and Tollan, Christopher and Dai, Zhigao and Zhang, Yupeng and Sriram, Sharath and Kalantar-Zadeh, Kourosh and Lee, Shuit-Tong and Hillenbrand, Rainer and Bao, Qiaoliang}, year={2018}, month=oct, pages={557–562} }