Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Lebrun, R., Ross, A., Bender, S. A., Qaiumzadeh, A., Baldrati, L., Cramer, J., Brataas, A., Duine, R. A., & Kläui, M. (2018). Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature, 561(7722), 222–225.

Authors 9
  1. R. Lebrun (first)
  2. A. Ross (additional)
  3. S. A. Bender (additional)
  4. A. Qaiumzadeh (additional)
  5. L. Baldrati (additional)
  6. J. Cramer (additional)
  7. A. Brataas (additional)
  8. R. A. Duine (additional)
  9. M. Kläui (additional)
References 52 Referenced 478
  1. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015). (10.1038/nphys3465) / Nat. Phys. by LJ Cornelissen (2015)
  2. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). (10.1126/science.aab1031) / Science by P Wadley (2016)
  3. Baierl, S. et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide. Phys. Rev. Lett. 117, 197201 (2016). (10.1103/PhysRevLett.117.197201) / Phys. Rev. Lett. by S Baierl (2016)
  4. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). (10.1038/nnano.2016.18) / Nat. Nanotechnol. by T Jungwirth (2016)
  5. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). (10.1103/RevModPhys.90.015005) / Rev. Mod. Phys. by V Baltz (2018)
  6. Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018). (10.1038/s41567-018-0062-7) / Nat. Phys. by J Železný (2018)
  7. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018). (10.1038/s41567-018-0063-6) / Nat. Phys. by T Jungwirth (2018)
  8. Lin, W., Chen, K., Zhang, S. & Chien, C. L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 116, 186601 (2016). (10.1103/PhysRevLett.116.186601) / Phys. Rev. Lett. by W Lin (2016)
  9. Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410 (2015). (10.1103/PhysRevB.91.220410) / Phys. Rev. B by H Wang (2015)
  10. Hahn, C. et al. Conduction of spin currents through insulating antiferromagnetic oxides. Europhys. Lett. 108, 57005 (2014). (10.1209/0295-5075/108/57005) / Europhys. Lett. by C Hahn (2014)
  11. Morin, F. J. Electrical properties of α-Fe2O3 containing titanium. Phys. Rev. 83, 1005–1010 (1951). (10.1103/PhysRev.83.1005) / Phys. Rev. by FJ Morin (1951)
  12. Bender, S. A., Skarsvåg, H., Brataas, A. & Duine, R. A. Enhanced spin conductance of a thin-film insulating antiferromagnet. Phys. Rev. Lett. 119, 056804 (2017). (10.1103/PhysRevLett.119.056804) / Phys. Rev. Lett. by SA Bender (2017)
  13. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015). (10.1038/nphys3347) / Nat. Phys. by AV Chumak (2015)
  14. Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952). (10.1103/PhysRev.85.329) / Phys. Rev. by F Keffer (1952)
  15. Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 93, 054412 (2016). (10.1103/PhysRevB.93.054412) / Phys. Rev. B by SM Rezende (2016)
  16. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016). (10.1103/PhysRevLett.116.097204) / Phys. Rev. Lett. by SM Wu (2016)
  17. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015). (10.1103/PhysRevLett.115.266601) / Phys. Rev. Lett. by S Seki (2015)
  18. Elliston, P. R. & Troup, G. J. Some antiferromagnetic resonance measurements in α-Fe2O3. J. Phys. C 1, 169–178 (1968). (10.1088/0022-3719/1/1/320) / J. Phys. C by PR Elliston (1968)
  19. Yuan, W. et al. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 4, eaat1098 (2018). (10.1126/sciadv.aat1098) / Sci. Adv. by W Yuan (2018)
  20. Ganzhorn, K. et al. Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures. AIP Adv. 7, 085102 (2017). (10.1063/1.4986848) / AIP Adv. by K Ganzhorn (2017)
  21. Shan, J. et al. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect. Phys. Rev. B 96, 184427 (2017). (10.1103/PhysRevB.96.184427) / Phys. Rev. B by J Shan (2017)
  22. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015). (10.1103/RevModPhys.87.1213) / Rev. Mod. Phys. by J Sinova (2015)
  23. Zhang, S. S.-L. & Zhang, S. Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012). (10.1103/PhysRevLett.109.096603) / Phys. Rev. Lett. by SS-L Zhang (2012)
  24. Wright, K. Focus: a trio of magnon transistors. Physics 11, 23 (2018). (10.1103/Physics.11.23) / Physics by K Wright (2018)
  25. Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017). (10.1103/PhysRevLett.118.137201) / Phys. Rev. Lett. by A Qaiumzadeh (2017)
  26. Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014). (10.1103/PhysRevB.90.094408) / Phys. Rev. B by S Takei (2014)
  27. Stiles, M. D. & McMichael, R. D. Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722–3733 (1999). (10.1103/PhysRevB.59.3722) / Phys. Rev. B by MD Stiles (1999)
  28. Cramer, J. et al. Spin transport across antiferromagnets induced by the spin Seebeck effect. J. Phys. D 51, 144004 (2018). (10.1088/1361-6463/aab223) / J. Phys. D by J Cramer (2018)
  29. Sulymenko, O. R. et al. Terahertz-frequency spin hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017). (10.1103/PhysRevApplied.8.064007) / Phys. Rev. Appl. by OR Sulymenko (2017)
  30. Kotthaus, J. P. & Jaccarino, V. Antiferromagnetic-resonance linewidths in MnF2. Phys. Rev. Lett. 28, 1649–1652 (1972). (10.1103/PhysRevLett.28.1649) / Phys. Rev. Lett. by JP Kotthaus (1972)
  31. Rezende, S. M. & White, R. M. Multimagnon theory of antiferromagnetic resonance relaxation. Phys. Rev. B 14, 2939–2955 (1976). (10.1103/PhysRevB.14.2939) / Phys. Rev. B by SM Rezende (1976)
  32. Thiery, N. et al. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures. Phys. Rev. B 97, 064422 (2018). (10.1103/PhysRevB.97.064422) / Phys. Rev. B by N Thiery (2018)
  33. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960). (10.1103/PhysRev.120.91) / Phys. Rev. by T Moriya (1960)
  34. Liu, J. Z. Morin transition in hematite doped with iridium ions. J. Magn. Magn. Mater. 54–57, 901–902 (1986). (10.1016/0304-8853(86)90305-7) / J. Magn. Magn. Mater. by JZ Liu (1986)
  35. Ellis, D. S. et al. Magnetic states at the surface of α-Fe2O3 thin films doped with Ti, Zn, or Sn. Phys. Rev. B 96, 094426 (2017). (10.1103/PhysRevB.96.094426) / Phys. Rev. B by DS Ellis (2017)
  36. Besser, P. J., Morrish, A. H. & Searle, C. W. Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153, 632–640 (1967). (10.1103/PhysRev.153.632) / Phys. Rev. by PJ Besser (1967)
  37. Mitsek, A. I. & Gaidanskii, P. F. The influence of domain structure on the magnetic properties of hematite. Phys. Status Solidi a 4, 319–326 (1971). (10.1002/pssa.2210040205) / Phys. Status Solidi a by AI Mitsek (1971)
  38. Morrison, B. R., Morrish, A. H. & Troup, G. J. High-field antiferromagnetic resonance in α-Fe2O3. Phys. Status Solidi b 56, 183–195 (1973). (10.1002/pssb.2220560117) / Phys. Status Solidi b by BR Morrison (1973)
  39. Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Theory of the spin Seebeck effect in antiferromagnets. Phys. Rev. B 93, 014425 (2016). (10.1103/PhysRevB.93.014425) / Phys. Rev. B by SM Rezende (2016)
  40. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves Ch. 3, 69–90 (CRC Press, Boca Raton, 1996). / Magnetization Oscillations and Waves by AG Gurevich (1996)
  41. Jungfleisch, M. B., Zhang, W. & Hoffmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018). (10.1016/j.physleta.2018.01.008) / Phys. Lett. A by MB Jungfleisch (2018)
  42. Korenev, V. L. et al. Long-range p–d exchange interaction in a ferromagnet–semiconductor hybrid structure. Nat. Phys. 12, 85–91 (2016). (10.1038/nphys3497) / Nat. Phys. by VL Korenev (2016)
  43. Zhang, S. S.-L. & Zhang, S. Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012). (10.1103/PhysRevB.86.214424) / Phys. Rev. B by SS-L Zhang (2012)
  44. Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016). (10.1103/PhysRevB.94.014412) / Phys. Rev. B by LJ Cornelissen (2016)
  45. Chen, Y.-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013). (10.1103/PhysRevB.87.144411) / Phys. Rev. B by Y-T Chen (2013)
  46. Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016). (10.1103/PhysRevB.94.174437) / Phys. Rev. B by J Shan (2016)
  47. Castel, V., Vlietstra, N., Ben Youssef, J. & van Wees, B. J. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 101, 132414 (2012). (10.1063/1.4754837) / Appl. Phys. Lett. by V Castel (2012)
  48. Jungfleisch, M. B., Lauer, V., Neb, R., Chumak, A. V. & Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 103, 022411 (2013). (10.1063/1.4813315) / Appl. Phys. Lett. by MB Jungfleisch (2013)
  49. Cornelissen, L. J. et al. Nonlocal magnon-polaron transport in yttrium iron garnet. Phys. Rev. B 96, 104441 (2017). (10.1103/PhysRevB.96.104441) / Phys. Rev. B by LJ Cornelissen (2017)
  50. Zhou, X. J. et al. Lateral transport properties of thermally excited magnons in yttrium iron garnet films. Appl. Phys. Lett. 110, 062407 (2017). (10.1063/1.4976074) / Appl. Phys. Lett. by XJ Zhou (2017)
  51. Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014). (10.1103/PhysRevLett.113.097202) / Phys. Rev. Lett. by H Wang (2014)
  52. Upadhyaya, P., Kim, S. K. & Tserkovnyak, Y. Magnetic domain wall floating on a spin superfluid. Phys. Rev. Lett. 118, 097201 (2017). (10.1103/PhysRevLett.118.097201) / Phys. Rev. Lett. by P Upadhyaya (2017)
Dates
Type When
Created 6 years, 11 months ago (Sept. 4, 2018, 11:45 a.m.)
Deposited 9 months ago (Nov. 27, 2024, 2:05 p.m.)
Indexed 18 hours, 38 minutes ago (Aug. 27, 2025, 12:01 p.m.)
Issued 6 years, 11 months ago (Sept. 12, 2018)
Published 6 years, 11 months ago (Sept. 12, 2018)
Published Online 6 years, 11 months ago (Sept. 12, 2018)
Published Print 6 years, 11 months ago (Sept. 13, 2018)
Funders 0

None

@article{Lebrun_2018, title={Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide}, volume={561}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0490-7}, DOI={10.1038/s41586-018-0490-7}, number={7722}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Lebrun, R. and Ross, A. and Bender, S. A. and Qaiumzadeh, A. and Baldrati, L. and Cramer, J. and Brataas, A. and Duine, R. A. and Kläui, M.}, year={2018}, month=sep, pages={222–225} }