Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
52
Referenced
478
-
Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
(
10.1038/nphys3465
) / Nat. Phys. by LJ Cornelissen (2015) -
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
(
10.1126/science.aab1031
) / Science by P Wadley (2016) -
Baierl, S. et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide. Phys. Rev. Lett. 117, 197201 (2016).
(
10.1103/PhysRevLett.117.197201
) / Phys. Rev. Lett. by S Baierl (2016) -
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
(
10.1038/nnano.2016.18
) / Nat. Nanotechnol. by T Jungwirth (2016) -
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
(
10.1103/RevModPhys.90.015005
) / Rev. Mod. Phys. by V Baltz (2018) -
Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).
(
10.1038/s41567-018-0062-7
) / Nat. Phys. by J Železný (2018) -
Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).
(
10.1038/s41567-018-0063-6
) / Nat. Phys. by T Jungwirth (2018) -
Lin, W., Chen, K., Zhang, S. & Chien, C. L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 116, 186601 (2016).
(
10.1103/PhysRevLett.116.186601
) / Phys. Rev. Lett. by W Lin (2016) -
Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410 (2015).
(
10.1103/PhysRevB.91.220410
) / Phys. Rev. B by H Wang (2015) -
Hahn, C. et al. Conduction of spin currents through insulating antiferromagnetic oxides. Europhys. Lett. 108, 57005 (2014).
(
10.1209/0295-5075/108/57005
) / Europhys. Lett. by C Hahn (2014) -
Morin, F. J. Electrical properties of α-Fe2O3 containing titanium. Phys. Rev. 83, 1005–1010 (1951).
(
10.1103/PhysRev.83.1005
) / Phys. Rev. by FJ Morin (1951) -
Bender, S. A., Skarsvåg, H., Brataas, A. & Duine, R. A. Enhanced spin conductance of a thin-film insulating antiferromagnet. Phys. Rev. Lett. 119, 056804 (2017).
(
10.1103/PhysRevLett.119.056804
) / Phys. Rev. Lett. by SA Bender (2017) -
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
(
10.1038/nphys3347
) / Nat. Phys. by AV Chumak (2015) -
Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).
(
10.1103/PhysRev.85.329
) / Phys. Rev. by F Keffer (1952) -
Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 93, 054412 (2016).
(
10.1103/PhysRevB.93.054412
) / Phys. Rev. B by SM Rezende (2016) -
Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).
(
10.1103/PhysRevLett.116.097204
) / Phys. Rev. Lett. by SM Wu (2016) -
Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).
(
10.1103/PhysRevLett.115.266601
) / Phys. Rev. Lett. by S Seki (2015) -
Elliston, P. R. & Troup, G. J. Some antiferromagnetic resonance measurements in α-Fe2O3. J. Phys. C 1, 169–178 (1968).
(
10.1088/0022-3719/1/1/320
) / J. Phys. C by PR Elliston (1968) -
Yuan, W. et al. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 4, eaat1098 (2018).
(
10.1126/sciadv.aat1098
) / Sci. Adv. by W Yuan (2018) -
Ganzhorn, K. et al. Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures. AIP Adv. 7, 085102 (2017).
(
10.1063/1.4986848
) / AIP Adv. by K Ganzhorn (2017) -
Shan, J. et al. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect. Phys. Rev. B 96, 184427 (2017).
(
10.1103/PhysRevB.96.184427
) / Phys. Rev. B by J Shan (2017) -
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
(
10.1103/RevModPhys.87.1213
) / Rev. Mod. Phys. by J Sinova (2015) -
Zhang, S. S.-L. & Zhang, S. Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012).
(
10.1103/PhysRevLett.109.096603
) / Phys. Rev. Lett. by SS-L Zhang (2012) -
Wright, K. Focus: a trio of magnon transistors. Physics 11, 23 (2018).
(
10.1103/Physics.11.23
) / Physics by K Wright (2018) -
Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).
(
10.1103/PhysRevLett.118.137201
) / Phys. Rev. Lett. by A Qaiumzadeh (2017) -
Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).
(
10.1103/PhysRevB.90.094408
) / Phys. Rev. B by S Takei (2014) -
Stiles, M. D. & McMichael, R. D. Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722–3733 (1999).
(
10.1103/PhysRevB.59.3722
) / Phys. Rev. B by MD Stiles (1999) -
Cramer, J. et al. Spin transport across antiferromagnets induced by the spin Seebeck effect. J. Phys. D 51, 144004 (2018).
(
10.1088/1361-6463/aab223
) / J. Phys. D by J Cramer (2018) -
Sulymenko, O. R. et al. Terahertz-frequency spin hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017).
(
10.1103/PhysRevApplied.8.064007
) / Phys. Rev. Appl. by OR Sulymenko (2017) -
Kotthaus, J. P. & Jaccarino, V. Antiferromagnetic-resonance linewidths in MnF2. Phys. Rev. Lett. 28, 1649–1652 (1972).
(
10.1103/PhysRevLett.28.1649
) / Phys. Rev. Lett. by JP Kotthaus (1972) -
Rezende, S. M. & White, R. M. Multimagnon theory of antiferromagnetic resonance relaxation. Phys. Rev. B 14, 2939–2955 (1976).
(
10.1103/PhysRevB.14.2939
) / Phys. Rev. B by SM Rezende (1976) -
Thiery, N. et al. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures. Phys. Rev. B 97, 064422 (2018).
(
10.1103/PhysRevB.97.064422
) / Phys. Rev. B by N Thiery (2018) -
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
(
10.1103/PhysRev.120.91
) / Phys. Rev. by T Moriya (1960) -
Liu, J. Z. Morin transition in hematite doped with iridium ions. J. Magn. Magn. Mater. 54–57, 901–902 (1986).
(
10.1016/0304-8853(86)90305-7
) / J. Magn. Magn. Mater. by JZ Liu (1986) -
Ellis, D. S. et al. Magnetic states at the surface of α-Fe2O3 thin films doped with Ti, Zn, or Sn. Phys. Rev. B 96, 094426 (2017).
(
10.1103/PhysRevB.96.094426
) / Phys. Rev. B by DS Ellis (2017) -
Besser, P. J., Morrish, A. H. & Searle, C. W. Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153, 632–640 (1967).
(
10.1103/PhysRev.153.632
) / Phys. Rev. by PJ Besser (1967) -
Mitsek, A. I. & Gaidanskii, P. F. The influence of domain structure on the magnetic properties of hematite. Phys. Status Solidi a 4, 319–326 (1971).
(
10.1002/pssa.2210040205
) / Phys. Status Solidi a by AI Mitsek (1971) -
Morrison, B. R., Morrish, A. H. & Troup, G. J. High-field antiferromagnetic resonance in α-Fe2O3. Phys. Status Solidi b 56, 183–195 (1973).
(
10.1002/pssb.2220560117
) / Phys. Status Solidi b by BR Morrison (1973) -
Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Theory of the spin Seebeck effect in antiferromagnets. Phys. Rev. B 93, 014425 (2016).
(
10.1103/PhysRevB.93.014425
) / Phys. Rev. B by SM Rezende (2016) - Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves Ch. 3, 69–90 (CRC Press, Boca Raton, 1996). / Magnetization Oscillations and Waves by AG Gurevich (1996)
-
Jungfleisch, M. B., Zhang, W. & Hoffmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018).
(
10.1016/j.physleta.2018.01.008
) / Phys. Lett. A by MB Jungfleisch (2018) -
Korenev, V. L. et al. Long-range p–d exchange interaction in a ferromagnet–semiconductor hybrid structure. Nat. Phys. 12, 85–91 (2016).
(
10.1038/nphys3497
) / Nat. Phys. by VL Korenev (2016) -
Zhang, S. S.-L. & Zhang, S. Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012).
(
10.1103/PhysRevB.86.214424
) / Phys. Rev. B by SS-L Zhang (2012) -
Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016).
(
10.1103/PhysRevB.94.014412
) / Phys. Rev. B by LJ Cornelissen (2016) -
Chen, Y.-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).
(
10.1103/PhysRevB.87.144411
) / Phys. Rev. B by Y-T Chen (2013) -
Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016).
(
10.1103/PhysRevB.94.174437
) / Phys. Rev. B by J Shan (2016) -
Castel, V., Vlietstra, N., Ben Youssef, J. & van Wees, B. J. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 101, 132414 (2012).
(
10.1063/1.4754837
) / Appl. Phys. Lett. by V Castel (2012) -
Jungfleisch, M. B., Lauer, V., Neb, R., Chumak, A. V. & Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 103, 022411 (2013).
(
10.1063/1.4813315
) / Appl. Phys. Lett. by MB Jungfleisch (2013) -
Cornelissen, L. J. et al. Nonlocal magnon-polaron transport in yttrium iron garnet. Phys. Rev. B 96, 104441 (2017).
(
10.1103/PhysRevB.96.104441
) / Phys. Rev. B by LJ Cornelissen (2017) -
Zhou, X. J. et al. Lateral transport properties of thermally excited magnons in yttrium iron garnet films. Appl. Phys. Lett. 110, 062407 (2017).
(
10.1063/1.4976074
) / Appl. Phys. Lett. by XJ Zhou (2017) -
Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).
(
10.1103/PhysRevLett.113.097202
) / Phys. Rev. Lett. by H Wang (2014) -
Upadhyaya, P., Kim, S. K. & Tserkovnyak, Y. Magnetic domain wall floating on a spin superfluid. Phys. Rev. Lett. 118, 097201 (2017).
(
10.1103/PhysRevLett.118.097201
) / Phys. Rev. Lett. by P Upadhyaya (2017)
Dates
Type | When |
---|---|
Created | 6 years, 11 months ago (Sept. 4, 2018, 11:45 a.m.) |
Deposited | 9 months ago (Nov. 27, 2024, 2:05 p.m.) |
Indexed | 18 hours, 38 minutes ago (Aug. 27, 2025, 12:01 p.m.) |
Issued | 6 years, 11 months ago (Sept. 12, 2018) |
Published | 6 years, 11 months ago (Sept. 12, 2018) |
Published Online | 6 years, 11 months ago (Sept. 12, 2018) |
Published Print | 6 years, 11 months ago (Sept. 13, 2018) |
@article{Lebrun_2018, title={Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide}, volume={561}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0490-7}, DOI={10.1038/s41586-018-0490-7}, number={7722}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Lebrun, R. and Ross, A. and Bender, S. A. and Qaiumzadeh, A. and Baldrati, L. and Cramer, J. and Brataas, A. and Duine, R. A. and Kläui, M.}, year={2018}, month=sep, pages={222–225} }