Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A., & Kourkoutis, L. F. (2018). Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 560(7718), 345–349.

Authors 5
  1. Michael J. Zachman (first)
  2. Zhengyuan Tu (additional)
  3. Snehashis Choudhury (additional)
  4. Lynden A. Archer (additional)
  5. Lena F. Kourkoutis (additional)
References 38 Referenced 727
  1. Wu, Y. & Yang, P. Direct observation of vapor−liquid−solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001). (10.1021/ja0059084) / J. Am. Chem. Soc. by Y Wu (2001)
  2. Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011). (10.1146/annurev-matsci-062910-095803) / Annu. Rev. Mater. Res. by S Weiner (2011)
  3. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017). (10.1038/nmat4738) / Nat. Mater. by VR Stamenkovic (2017)
  4. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by J-M Tarascon (2001)
  5. Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012). (10.1021/cr2002068) / Chem. Rev. by F Zaera (2012)
  6. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016). (10.1038/nenergy.2016.114) / Nat. Energy by MD Tikekar (2016)
  7. Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). (10.1002/advs.201500213) / Adv. Sci. by X-B Cheng (2016)
  8. Yamaki, J. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998). (10.1016/S0378-7753(98)00067-6) / J. Power Sources by J Yamaki (1998)
  9. Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000). (10.1016/S0378-7753(00)00431-6) / J. Power Sources by D Aurbach (2000)
  10. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). (10.1039/C6EE01674J) / Energy Environ. Sci. by P Bai (2016)
  11. Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth/dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). (10.1016/j.nanoen.2016.12.001) / Nano Energy by A Kushima (2017)
  12. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988). (10.1017/S0033583500004297) / Q. Rev. Biophys. by J Dubochet (1988)
  13. Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013). (10.1038/nmat3784) / Nat. Mater. by Y-Y Hu (2013)
  14. Heymann, J. A. W. et al. Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155, 63–73 (2006). (10.1016/j.jsb.2006.03.006) / J. Struct. Biol. by JAW Heymann (2006)
  15. Zachman, M. J., Asenath-Smith, E., Estroff, L. A. & Kourkoutis, L. F. Site-specific preparation of intact solid–liquid interfaces by label-free in situ localization and cryo-focused ion beam lift-out. Microsc. Microanal. 22, 1338–1349 (2016). (10.1017/S1431927616011892) / Microsc. Microanal. by MJ Zachman (2016)
  16. Cody, G. D. et al. Quantitative organic and light-element analysis of comet 81P/Wild 2 particles using C-, N-, and O-mu-XANES. Meteorit. Planet. Sci. 43, 353–365 (2008). (10.1111/j.1945-5100.2008.tb00627.x) / Meteorit. Planet. Sci. by GD Cody (2008)
  17. Yang, C. R., Wang, Y. Y. & Wan, C. C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J. Power Sources 72, 66–70 (1998). (10.1016/S0378-7753(97)02655-4) / J. Power Sources by CR Yang (1998)
  18. Zhuang, G. V., Xu, K., Yang, H., Jow, T. R. & Ross, P. N. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF 6/EC:EMC electrolyte. J. Phys. Chem. B 109, 17567–17573 (2005). (10.1021/jp052474w) / J. Phys. Chem. B by GV Zhuang (2005)
  19. Metzger, M., Strehle, B., Solchenbach, S. & Gasteiger, H. A. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation. J. Electrochem. Soc. 163, A798–A809 (2016). (10.1149/2.1151605jes) / J. Electrochem. Soc. by M Metzger (2016)
  20. Szczȩśniak, M. M. & Ratajczak, H. Ab initio calculations on the lithium fluoride–ethylene complex. J. Chem. Phys. 67, 5400–5401 (1977). (10.1063/1.434654) / J. Chem. Phys. by MM Szczȩśniak (1977)
  21. Onuki, M. et al. Identification of the source of evolved gas in Li-ion batteries using #2#1 -labeled solvents. J. Electrochem. Soc. 155, A794–A797 (2008). (10.1149/1.2969947) / J. Electrochem. Soc. by M Onuki (2008)
  22. Aurbach, D. & Weissman, I. On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1, 324–331 (1999). (10.1016/S1388-2481(99)00064-8) / Electrochem. Commun. by D Aurbach (1999)
  23. Liu, D.-R. & Williams, D. B. The electron-energy-loss spectrum of lithium metal. Philos. Mag. B 53, L123–L128 (1986). (10.1080/13642818608240660) / Philos. Mag. B by D-R Liu (1986)
  24. Oudriss, A. et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel. Scr. Mater. 66, 37–40 (2012). (10.1016/j.scriptamat.2011.09.036) / Scr. Mater. by A Oudriss (2012)
  25. Islam, A. K. M. A. Lighter alkali hydride and deuteride. Phys. Status Solidi b 180, 9–57 (1993). (10.1002/pssb.2221800102) / Phys. Status Solidi b by AKMA Islam (1993)
  26. Settouti, N. & Aourag, H. Structural and mechanical properties of alkali hydrides investigated by the first-principles calculations and principal component analysis. Solid State Sci. 58, 30–36 (2016). (10.1016/j.solidstatesciences.2016.05.006) / Solid State Sci. by N Settouti (2016)
  27. Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016). (10.1002/aelm.201500246) / Adv. Electron. Mater. by S Choudhury (2016)
  28. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in salt-reinforced electrolytes. Nat. Mater. 13, 961–969 (2014). (10.1038/nmat4041) / Nat. Mater. by Y Lu (2014)
  29. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018). (10.1073/pnas.1712895115) / Proc. Natl Acad. Sci. USA by L Suo (2018)
  30. Zhao, Q. et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew. Chem. Int. Ed. 57, 992–996 (2018). (10.1002/anie.201711598) / Angew. Chem. Int. Ed. by Q Zhao (2018)
  31. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016). (10.1017/S1431927615015664) / Microsc. Microanal. by MW Tate (2016)
  32. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004). (10.1016/j.micron.2004.02.003) / Micron by RF Egerton (2004)
  33. Lin, F., Markus, I. M., Doeff, M. M. & Xin, H. L. Chemical and structural stability of lithium-ion battery electrode materials under electron beam. Sci. Rep. 4, 5694 (2014). (10.1038/srep05694) / Sci. Rep. by F Lin (2014)
  34. Miki, T., Ikeya, M., Kondo, Y. & Kanzaki, H. Reflectance spectrum of lithium hydride at the Li K-absorption edge. Solid State Commun. 39, 647–649 (1981). (10.1016/0038-1098(81)90342-2) / Solid State Commun. by T Miki (1981)
  35. Liu, D.-R. Electron energy loss spectroscopy of LiH with a scanning transmission electron microscope. Solid State Commun. 63, 489–493 (1987). (10.1016/0038-1098(87)90277-8) / Solid State Commun. by D-R Liu (1987)
  36. Parades Mellone, O. A., Ceppli, S. A., Arneodo Larochette, P. P. & Stutz, G. E. Excitación de electrones K del Li a baja transferencia de momento por dispersión inelástica de rayos X en LiH. Anal. Asoc. Fís. Argentina 26, 93–97 (2015). / Anal. Asoc. Fís. Argentina by OA Parades Mellone (2015)
  37. Kesselman, E. et al. Cryogenic transmission electron microscopy imaging of vesicles formed by a polystyrene−polyisoprene diblock copolymer. Macromolecules 38, 6779–6781 (2005). (10.1021/ma0510587) / Macromolecules by E Kesselman (2005)
  38. Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012). (10.1017/S1431927612000244) / Microsc. Microanal. by P Cueva (2012)
Dates
Type When
Created 7 years ago (Aug. 9, 2018, 11:15 a.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 5:48 p.m.)
Indexed 20 minutes ago (Aug. 20, 2025, 8:57 p.m.)
Issued 7 years ago (Aug. 1, 2018)
Published 7 years ago (Aug. 1, 2018)
Published Online 7 years ago (Aug. 15, 2018)
Published Print 7 years ago (Aug. 1, 2018)
Funders 0

None

@article{Zachman_2018, title={Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries}, volume={560}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0397-3}, DOI={10.1038/s41586-018-0397-3}, number={7718}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Zachman, Michael J. and Tu, Zhengyuan and Choudhury, Snehashis and Archer, Lynden A. and Kourkoutis, Lena F.}, year={2018}, month=aug, pages={345–349} }