Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Fei, Z., Zhao, W., Palomaki, T. A., Sun, B., Miller, M. K., Zhao, Z., Yan, J., Xu, X., & Cobden, D. H. (2018). Ferroelectric switching of a two-dimensional metal. Nature, 560(7718), 336–339.

Authors 9
  1. Zaiyao Fei (first)
  2. Wenjin Zhao (additional)
  3. Tauno A. Palomaki (additional)
  4. Bosong Sun (additional)
  5. Moira K. Miller (additional)
  6. Zhiying Zhao (additional)
  7. Jiaqiang Yan (additional)
  8. Xiaodong Xu (additional)
  9. David H. Cobden (additional)
References 32 Referenced 834
  1. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). (10.1103/RevModPhys.77.1083) / Rev. Mod. Phys. by M Dawber (2005)
  2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007). (10.1126/science.1129564) / Science by JF Scott (2007)
  3. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965). (10.1103/PhysRevLett.14.217) / Phys. Rev. Lett. by PW Anderson (1965)
  4. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). (10.1038/nmat3754) / Nat. Mater. by Y Shi (2013)
  5. Benedek, N. A. & Birol, T. ‘Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C 4, 4000–4015 (2016). (10.1039/C5TC03856A) / J. Mater. Chem. C by NA Benedek (2016)
  6. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016). (10.1038/nature17628) / Nature by TH Kim (2016)
  7. Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci. Adv. 2, e1601378 (2016). (10.1126/sciadv.1601378) / Sci. Adv. by H Sakai (2016)
  8. Rajapitamahuni, A., Hoffman, J., Ahn, C. H. & Hong, X. Examining graphene field effect sensors for ferroelectric thin film studies. Nano Lett. 13, 4374–4379 (2013). (10.1021/nl402204t) / Nano Lett. by A Rajapitamahuni (2013)
  9. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). (10.1038/nature22391) / Nature by B Huang (2017)
  10. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  11. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  12. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  13. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998). (10.1038/36069) / Nature by AV Bune (1998)
  14. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017). (10.1038/natrevmats.2016.87) / Nat. Rev. Mater. by LW Martin (2017)
  15. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014). (10.1103/PhysRevLett.112.157601) / Phys. Rev. Lett. by SN Shirodkar (2014)
  16. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). (10.1038/ncomms12357) / Nat. Commun. by F Liu (2016)
  17. Fei, R. X., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016). (10.1103/PhysRevLett.117.097601) / Phys. Rev. Lett. by RX Fei (2016)
  18. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015). (10.1038/nature15768) / Nature by AA Soluyanov (2015)
  19. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). (10.1126/science.1256815) / Science by X Qian (2014)
  20. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017). (10.1038/nphys4091) / Nat. Phys. by Z Fei (2017)
  21. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017). (10.1038/nphys4174) / Nat. Phys. by S Tang (2017)
  22. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018). (10.1126/science.aan6003) / Science by S Wu (2018)
  23. Fatemi, V. et al. Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2. Phys. Rev. B 95, 041410(R) (2017). (10.1103/PhysRevB.95.041410) / Phys. Rev. B by V Fatemi (2017)
  24. Strukov, B. A. & Levanyuk, A. P. Ferroelectric Phenomena in Crystals: Physical Foundations 193–224 (Springer, Berlin, 1998). (10.1007/978-3-642-60293-1) / Ferroelectric Phenomena in Crystals: Physical Foundations by BA Strukov (1998)
  25. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  26. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  27. Cochran, W. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387–423 (1960). (10.1080/00018736000101229) / Adv. Phys. by W Cochran (1960)
  28. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014). (10.1038/nature13763) / Nature by MN Ali (2014)
  29. Zhao, Y. F. et al. Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals. Phys. Rev. B 92, 206803(R) (2015). / Phys. Rev. B by YF Zhao (2015)
  30. Wu, Y. et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 121113 (2016). (10.1103/PhysRevB.94.121113) / Phys. Rev. B by Y Wu (2016)
  31. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  32. Zomer, P. J., Guimaraes, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014). (10.1063/1.4886096) / Appl. Phys. Lett. by PJ Zomer (2014)
Dates
Type When
Created 7 years, 1 month ago (July 20, 2018, 11:51 a.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 5:47 p.m.)
Indexed 49 minutes ago (Aug. 21, 2025, 4:47 a.m.)
Issued 7 years ago (July 23, 2018)
Published 7 years ago (July 23, 2018)
Published Online 7 years ago (July 23, 2018)
Published Print 7 years ago (Aug. 1, 2018)
Funders 0

None

@article{Fei_2018, title={Ferroelectric switching of a two-dimensional metal}, volume={560}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0336-3}, DOI={10.1038/s41586-018-0336-3}, number={7718}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Fei, Zaiyao and Zhao, Wenjin and Palomaki, Tauno A. and Sun, Bosong and Miller, Moira K. and Zhao, Zhiying and Yan, Jiaqiang and Xu, Xiaodong and Cobden, David H.}, year={2018}, month=jul, pages={336–339} }