Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Kasahara, Y., Ohnishi, T., Mizukami, Y., Tanaka, O., Ma, S., Sugii, K., Kurita, N., Tanaka, H., Nasu, J., Motome, Y., Shibauchi, T., & Matsuda, Y. (2018). Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature, 559(7713), 227–231.

Authors 12
  1. Y. Kasahara (first)
  2. T. Ohnishi (additional)
  3. Y. Mizukami (additional)
  4. O. Tanaka (additional)
  5. Sixiao Ma (additional)
  6. K. Sugii (additional)
  7. N. Kurita (additional)
  8. H. Tanaka (additional)
  9. J. Nasu (additional)
  10. Y. Motome (additional)
  11. T. Shibauchi (additional)
  12. Y. Matsuda (additional)
References 37 Referenced 756
  1. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). (10.1016/j.aop.2005.10.005) / Ann. Phys. by A Kitaev (2006)
  2. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009). (10.1103/PhysRevLett.102.017205) / Phys. Rev. Lett. by G Jackeli (2009)
  3. Trebst, S. Kitaev materials. Preprint at https://arxiv.org/abs/1701.07056 (2017).
  4. Kim, H.-S., Shankar, V. V., Catuneanu, A. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin–orbit coupling. Phys. Rev. B 91, 241110 (2015). (10.1103/PhysRevB.91.241110) / Phys. Rev. B by H-S Kim (2015)
  5. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016). (10.1038/nmat4604) / Nat. Mater. by A Banerjee (2016)
  6. Sandilands, L. J., Tian, Y., Plumb, W., Kim, Y.-J. & Burch, K. S. scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 114, 147201 (2015). (10.1103/PhysRevLett.114.147201) / Phys. Rev. Lett. by LJ Sandilands (2015)
  7. Nasu, J., Knolle, J., Kovrizhin, D. L., Motome, Y. & Moessner, R. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys. 12, 912–915 (2016). (10.1038/nphys3809) / Nat. Phys. by J Nasu (2016)
  8. Yadav, R. et al. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep. 6, 37925 (2016). (10.1038/srep37925) / Sci. Rep. by R Yadav (2016)
  9. Baek, S.-H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017). (10.1103/PhysRevLett.119.037201) / Phys. Rev. Lett. by S-H Baek (2017)
  10. Wolter, A. U. B. et al. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96, 041405 (2017). (10.1103/PhysRevB.96.041405) / Phys. Rev. B by AUB Wolter (2017)
  11. Leahy, I. A. et al. Anomalous thermal conductivity and magnetic torque response in the honeycomb magnet α-RuCl3. Phys. Rev. Lett. 118, 187203 (2017). (10.1103/PhysRevLett.118.187203) / Phys. Rev. Lett. by IA Leahy (2017)
  12. Hentrich, R. et al. Unusual phonon heat transport in α-RuCl3: strong spin–phonon scattering and field-induced spin gap. Phys. Rev. Lett. 120, 117204 (2018). (10.1103/PhysRevLett.120.117204) / Phys. Rev. Lett. by R Hentrich (2018)
  13. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000). (10.1103/PhysRevB.61.10267) / Phys. Rev. B by N Read (2000)
  14. Sumiyoshi, H. & Fujimoto, S. Quantum thermal hall effect in a time-reversal-symmetry- broken topological superconductor in two dimensions: approach from bulk calculations. J. Phys. Soc. Jpn. 82, 023602 (2013). (10.7566/JPSJ.82.023602) / J. Phys. Soc. Jpn by H Sumiyoshi (2013)
  15. Nomura, K., Ryu, S., Furusaki, A. & Nagaosa, N. Cross-correlated responses of topological superconductors and superfluids. Phys. Rev. Lett. 108, 026802 (2012). (10.1103/PhysRevLett.108.026802) / Phys. Rev. Lett. by K Nomura (2012)
  16. Nasu, J., Yoshitake, J. & Motome, Y. Thermal transport in the Kitaev model. Phys. Rev. Lett. 119, 127204 (2017). (10.1103/PhysRevLett.119.127204) / Phys. Rev. Lett. by J Nasu (2017)
  17. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012). (10.1126/science.1222360) / Science by V Mourik (2012)
  18. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014). (10.1126/science.1259327) / Science by S Nadj-Perge (2014)
  19. Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012). (10.1038/nphys2479) / Nat. Phys. by A Das (2012)
  20. He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator- superconductor structure. Science 357, 294–299 (2017). (10.1126/science.aag2792) / Science by QL He (2017)
  21. Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015). (10.1103/PhysRevB.92.235119) / Phys. Rev. B by RD Johnson (2015)
  22. Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α-RuCl3. Phys. Rev. Lett. 120, 217205 (2018). (10.1103/PhysRevLett.120.217205) / Phys. Rev. Lett. by Y Kasahara (2018)
  23. Majumder, M., Schmidt, M., Rosner, H., Tsirlin, A. A., Yasuoka, H. & Baenitz, M. Anisotropic Ru3+ 4d 5 magnetism in the α-RuCl3 honeycomb system: susceptibility, specific heat, and zero-field NMR. Phys. Rev. B 91, 180401 (2015). (10.1103/PhysRevB.91.180401) / Phys. Rev. B by M Majumder (2015)
  24. Chaloupka, L. & Khaliullin, G. Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3. Phys. Rev. B 94, 064435 (2016). (10.1103/PhysRevB.94.064435) / Phys. Rev. B by L Chaloupka (2016)
  25. Janša N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. https://doi.org/10.1038/s41567-018-0129-5 (2018). (10.1038/s41567-018-0129-5)
  26. Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).
  27. Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017). (10.1038/nature22052) / Nature by M Banerjee (2017)
  28. Hirobe, D., Sato, M., Shiomi, Y., Tanaka, H. & Saitoh, E. Magnetic thermal conductivity far above the Néel temperatures in the Kitaev-magnet candidate α-RuCl3. Phys. Rev. B 95, 241112 (2017). (10.1103/PhysRevB.95.241112) / Phys. Rev. B by D Hirobe (2017)
  29. Yu, Y. J. et al. Ultralow-temperature thermal conductivity of the Kitaev honeycomb magnet α-RuCl3 across the field-induced phase transition. Phys. Rev. Lett. 120, 067202 (2018). (10.1103/PhysRevLett.120.067202) / Phys. Rev. Lett. by YJ Yu (2018)
  30. Gohlke, M., Wachtel, G., Yamaji, Y., Pollmann, F. & Kim, Y. B. Signatures of quantum spin liquid in Kitaev-like frustrated magnets. Phys. Rev. B 97, 075126 (2018). (10.1103/PhysRevB.97.075126) / Phys. Rev. B by M Gohlke (2018)
  31. Winter, S. M., Li, Y., Jeschke, H. O. & Valenti, R. Challenges in design of Kitaev materials: magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016). (10.1103/PhysRevB.93.214431) / Phys. Rev. B by SM Winter (2016)
  32. Jiang, H.-C., Gu, Z.-C., Qi, X.-L. & Trebst, S. Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: Phase diagram of the Heisenberg-Kitaev model in a magnetic field. Phys. Rev. B 83, 245104 (2011). (10.1103/PhysRevB.83.245104) / Phys. Rev. B by H-C Jiang (2011)
  33. Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transition in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015). (10.1103/PhysRevB.91.094422) / Phys. Rev. B by Y Kubota (2015)
  34. Watanabe, D. et al. Emergence of nontrivial magnetic excitations in a spin liquid state of kagomé volborthite. Proc. Natl Acad. Sci. USA 113, 8653–8657 (2016). (10.1073/pnas.1524076113) / Proc. Natl Acad. Sci. USA by D Watanabe (2016)
  35. Taylor, O. J., Carrington, A. & Schlueter, J. A. Specific-heat measurements of the gap structure of the organic superconductor κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 99, 057001 (2007). (10.1103/PhysRevLett.99.057001) / Phys. Rev. Lett. by OJ Taylor (2007)
  36. Han, J. H. & Lee, H. Spin chirality and Hall-like transport phenomena of spin excitations. J. Phys. Soc. Jpn 86, 011007 (2017). (10.7566/JPSJ.86.011007) / J. Phys. Soc. Jpn. by JH Han (2017)
  37. Sugii, K. et al. Thermal Hall effect in a phonon-glass Ba3CuSb2O9. Phys. Rev. Lett. 118, 145902 (2017). (10.1103/PhysRevLett.118.145902) / Phys. Rev. Lett. by K Sugii (2017)
Dates
Type When
Created 7 years, 1 month ago (July 3, 2018, 11:35 a.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 5:47 p.m.)
Indexed 3 days, 18 hours ago (Aug. 23, 2025, 9:57 p.m.)
Issued 7 years, 1 month ago (July 1, 2018)
Published 7 years, 1 month ago (July 1, 2018)
Published Online 7 years, 1 month ago (July 11, 2018)
Published Print 7 years, 1 month ago (July 1, 2018)
Funders 0

None

@article{Kasahara_2018, title={Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid}, volume={559}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/s41586-018-0274-0}, DOI={10.1038/s41586-018-0274-0}, number={7713}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Kasahara, Y. and Ohnishi, T. and Mizukami, Y. and Tanaka, O. and Ma, Sixiao and Sugii, K. and Kurita, N. and Tanaka, H. and Nasu, J. and Motome, Y. and Shibauchi, T. and Matsuda, Y.}, year={2018}, month=jul, pages={227–231} }