Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Materials (297)
Authors
3
- Corey Oses (first)
- Cormac Toher (additional)
- Stefano Curtarolo (additional)
References
194
Referenced
1,527
-
Miracle, D. B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 10, 1805 (2019).
(
10.1038/s41467-019-09700-1
) / Nat. Commun. by DB Miracle (2019) -
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
(
10.1016/j.msea.2003.10.257
) / Mater. Sci. Eng. A by B Cantor (2004) -
Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
(
10.1002/adem.200300567
) / Adv. Eng. Mater. by J-W Yeh (2004) -
Feng, R., Liaw, P. K., Gao, M. C. & Widom, M. First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).
(
10.1038/s41524-017-0049-4
) / npj Comput. Mater. by R Feng (2017) -
Gao, M. C. et al. Computational modeling of high-entropy alloys: structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627–3641 (2017).
(
10.1557/jmr.2017.366
) / J. Mater. Res. by MC Gao (2017) -
Widom, M. Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33, 2881–2898 (2018).
(
10.1557/jmr.2018.222
) / J. Mater. Res. by M Widom (2018) -
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
(
10.1038/s41578-019-0121-4
) / Nat. Rev. Mater. by EP George (2019) -
Yeh, J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006).
(
10.3166/acsm.31.633-648
) / Ann. Chim. Sci. Mat. by J-W Yeh (2006) -
Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).
(
10.1038/nmat829
) / Nat. Mater. by I Takeuchi (2003) -
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
(
10.1038/nmat3568
) / Nat. Mater. by S Curtarolo (2013) -
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
(
10.1038/s41586-018-0337-2
) / Nature by KT Butler (2018) -
Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).
(
10.1038/s41524-019-0221-0
) / npj Comput. Mater. by J Schmidt (2019) - Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). / Nat. Commun. by CM Rost (2015)
-
Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).
(
10.1038/srep37946
) / Sci. Rep. by J Gild (2016) -
Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).
(
10.1038/s41467-018-07160-7
) / Nat. Commun. by P Sarker (2018) -
Castle, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. J. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 8609 (2018).
(
10.1038/s41598-018-26827-1
) / Sci. Rep. by E Castle (2018) -
Yan, X. et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Amer. Ceram. Soc. 101, 4486–4491 (2018).
(
10.1111/jace.15779
) / J. Amer. Ceram. Soc. by X Yan (2018) -
Jin, T. et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512 (2018).
(
10.1002/adma.201707512
) / Adv. Mater. by T Jin (2018) -
Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).
(
10.1021/acs.inorgchem.8b02379
) / Inorg. Chem. by R-Z Zhang (2018) -
Gild, J. et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337–343 (2019).
(
10.1016/j.jmat.2019.03.002
) / J. Materiomics by J Gild (2019) -
Qin, Y. et al. A high entropy silicide by reactive spark plasma sintering. J. Adv. Ceram. 8, 148–152 (2019).
(
10.1007/s40145-019-0319-3
) / J. Adv. Ceram. by Y Qin (2019) -
Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
(
10.1038/ncomms7529
) / Nat. Commun. by ON Senkov (2015) -
Tsai, M.-H. & Yeh, J.-W. High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014).
(
10.1080/21663831.2014.912690
) / Mater. Res. Lett. by M-H Tsai (2014) -
Miracle, D. B. High-entropy alloys: a current evaluation of founding ideas and core effects and exploring nonlinear alloys. JOM 69, 2130–2136 (2017).
(
10.1007/s11837-017-2527-z
) / JOM by DB Miracle (2017) -
Grzesik, Z. et al. Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide. J. Eur. Ceram. Soc. 39, 4292–4298 (2019).
(
10.1016/j.jeurceramsoc.2019.06.018
) / J. Eur. Ceram. Soc. by Z Grzesik (2019) -
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
(
10.1016/j.actamat.2016.08.081
) / Acta Mater. by DB Miracle (2017) -
Sarkar, A. et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38, 2318–2327 (2018).
(
10.1016/j.jeurceramsoc.2017.12.058
) / J. Eur. Ceram. Soc. by A Sarkar (2018) -
Dong, Y. et al. High-entropy environmental barrier coating for the ceramic matrix composites. J. Eur. Ceram. Soc. 39, 2574–2579 (2019).
(
10.1016/j.jeurceramsoc.2019.02.022
) / J. Eur. Ceram. Soc. by Y Dong (2019) -
Ren, X., Tian, Z., Zhang, J. & Wang, J. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scr. Mater. 168, 47–50 (2019).
(
10.1016/j.scriptamat.2019.04.018
) / Scr. Mater. by X Ren (2019) -
Chen, J. et al. Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. J. Phys. Chem. C. 123, 17735–17744 (2019).
(
10.1021/acs.jpcc.9b04992
) / J. Phys. Chem. C. by J Chen (2019) -
Zhao, Z., Xiang, H., Dai, F.-Z., Peng, Z. & Zhou, Y. (TiZrHf)P2O7: an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J. Mater. Sci. Technol. 35, 2227–2231 (2019).
(
10.1016/j.jmst.2019.05.030
) / J. Mater. Sci. Technol. by Z Zhao (2019) -
Chen, H. et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol. 35, 1700–1705 (2019).
(
10.1016/j.jmst.2019.04.006
) / J. Mater. Sci. Technol. by H Chen (2019) -
Tsai, D.-C. et al. Oxidation resistance and characterization of (AlCrMoTaTi)–Six–N coating deposited via magnetron sputtering. J. Alloys Compd. 647, 179–188 (2015).
(
10.1016/j.jallcom.2015.06.025
) / J. Alloys Compd. by D-C Tsai (2015) -
Vladescu, A. et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLOS ONE 11, e0161151 (2016).
(
10.1371/journal.pone.0161151
) / PLOS ONE by A Vladescu (2016) -
Zhou, J. et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44, 22014–22018 (2018).
(
10.1016/j.ceramint.2018.08.100
) / Ceram. Int. by J Zhou (2018) - Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018). / Nat. Commun. by A Sarkar (2018)
-
Zheng, Y. et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019).
(
10.1016/j.ensm.2019.02.030
) / Energy Storage Mater. by Y Zheng (2019) -
Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).
(
10.1039/C9EE00368A
) / Energy Environ. Sci. by Q Wang (2019) -
Cheng, K.-H., Tsai, C.-W., Lin, S.-J. & Yeh, J.-W. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering. J. Phys. D 44, 205405 (2011).
(
10.1088/0022-3727/44/20/205405
) / J. Phys. D by K-H Cheng (2011) -
Hsieh, M.-H., Tsai, M.-H., Shen, W.-J. & Yeh, J.-W. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf. Coat. Technol. 221, 118–123 (2013).
(
10.1016/j.surfcoat.2013.01.036
) / Surf. Coat. Technol. by M-H Hsieh (2013) -
Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).
(
10.1002/adma.201805004
) / Adv. Mater. by JL Braun (2018) -
Lai, C.-H., Lin, S.-J., Yeh, J.-W. & Chang, S.-Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 201, 3275–3280 (2006).
(
10.1016/j.surfcoat.2006.06.048
) / Surf. Coat. Technol. by C-H Lai (2006) -
Huang, P.-K. & Yeh, J.-W. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. J. Phys. D 42, 115401 (2009).
(
10.1088/0022-3727/42/11/115401
) / J. Phys. D by P-K Huang (2009) -
Huang, P.-K. & Yeh, J.-W. Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105–108 (2010).
(
10.1016/j.scriptamat.2009.09.015
) / Scr. Mater. by P-K Huang (2010) -
Harrington, T. J. et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019).
(
10.1016/j.actamat.2018.12.054
) / Acta Mater. by TJ Harrington (2019) -
Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).
(
10.1103/PhysRevB.85.115104
) / Phys. Rev. B by V Stevanović (2012) -
Friedrich, R. et al. Coordination corrected ab initio formation enthalpies. npj Comput. Mater. 5, 59 (2019).
(
10.1038/s41524-019-0192-1
) / npj Comput. Mater. by R Friedrich (2019) -
Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. npj Comput. Mater. 5, 69 (2019).
(
10.1038/s41524-019-0206-z
) / npj Comput. Mater. by C Toher (2019) -
van de Walle, A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33, 266–278 (2009).
(
10.1016/j.calphad.2008.12.005
) / Calphad by A van de Walle (2009) -
Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 159, 364–383 (2018).
(
10.1016/j.actamat.2018.07.042
) / Acta Mater. by Y Lederer (2018) -
Chen, T.-K., Shun, T. T., Yeh, J.-W. & Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193–200 (2004).
(
10.1016/j.surfcoat.2004.08.023
) / Surf. Coat. Technol. by T-K Chen (2004) -
Chen, T.-K., Wong, M.-S., Shun, T.-T. & Yeh, J.-W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 200, 1361–1365 (2005).
(
10.1016/j.surfcoat.2005.08.081
) / Surf. Coat. Technol. by T-K Chen (2005) -
Huang, Y.-S., Chen, L., Lui, H.-W., Cai, M.-H. & Yeh, J.-W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 457, 77–83 (2007).
(
10.1016/j.msea.2006.12.001
) / Mater. Sci. Eng. A by Y-S Huang (2007) -
Chen, T.-K. & Wong, M.-S. Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films. Thin Solid. Films 516, 141–146 (2007).
(
10.1016/j.tsf.2007.06.142
) / Thin Solid. Films by T-K Chen (2007) -
Anand, G., Wynn, A. P., Handley, C. M. & Freeman, C. L. Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018).
(
10.1016/j.actamat.2017.12.037
) / Acta Mater. by G Anand (2018) -
Yang, Y., Wang, W., Gan, G.-Y., Shi, X.-F. & Tang, B.-Y. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: ab initio investigation. Phys. B 550, 163–170 (2018).
(
10.1016/j.physb.2018.09.014
) / Phys. B by Y Yang (2018) -
Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).
(
10.1103/PhysRevLett.65.353
) / Phys. Rev. Lett. by A Zunger (1990) -
Ye, B. et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 170, 15–23 (2019).
(
10.1016/j.actamat.2019.03.021
) / Acta Mater. by B Ye (2019) -
Yang, K., Oses, C. & Curtarolo, S. Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem. Mater. 28, 6484–6492 (2016).
(
10.1021/acs.chemmater.6b01449
) / Chem. Mater. by K Yang (2016) -
Rák, Zs. et al. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120, 095105 (2016).
(
10.1063/1.4962135
) / J. Appl. Phys. by Zs Rák (2016) -
Rost, C. M., Rák, Zs., Brenner, D. W. & Maria, J.-P. Local structure of the MgxNixCoxCuxZnxO(x = 0.2) entropy-stabilized oxide: an EXAFS study. J. Amer. Ceram. Soc. 100, 2732–2738 (2017).
(
10.1111/jace.14756
) / J. Amer. Ceram. Soc. by CM Rost (2017) -
Rák, Zs., Maria, J.-P. & Brenner, D. W. Evidence for Jahn–Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study. Mater. Lett. 217, 300–303 (2018).
(
10.1016/j.matlet.2018.01.111
) / Mater. Lett. by Zs Rák (2018) -
Bérardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Stat. Solidi Rapid Res. Lett. 10, 328–333 (2016).
(
10.1002/pssr.201600043
) / Phys. Stat. Solidi Rapid Res. Lett. by D Bérardan (2016) -
Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).
(
10.1039/C6TA03249D
) / J. Mater. Chem. A by D Bérardan (2016) -
Osenciat, N. et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. J. Amer. Ceram. Soc. 102, 6156–6162 (2019).
(
10.1111/jace.16511
) / J. Amer. Ceram. Soc. by N Osenciat (2019) -
Bérardan, D., Meena, A. K., Franger, S., Herrero, C. & Dragoe, N. Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693–700 (2017).
(
10.1016/j.jallcom.2017.02.070
) / J. Alloys Compd. by D Bérardan (2017) - Kaufman, L. & Bernstein, H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, 1970).
- Saunders, N. & Miodownik, A. P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier Science, 1998).
-
Zhong, Y. et al. Exploration of high entropy ceramics (HECs) with computational thermodynamics — a case study with LaMnO3 ± δ. Mater. Des. 182, 108060 (2019).
(
10.1016/j.matdes.2019.108060
) / Mater. Des. by Y Zhong (2019) -
Wang, Y.-P., Gan, G.-Y., Wang, W., Yang, Y. & Tang, B.-Y. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf0.2Zr0.2Ta0.2M 0.2Ti0.2)B2 (M = Nb, Mo, Cr). Phys. Stat. Solidi B 255, 1800011 (2018).
(
10.1002/pssb.201800011
) / Phys. Stat. Solidi B by Y-P Wang (2018) -
Zhang, Q., Zhang, J., Li, N. & Chen, W. Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation. J. Appl. Phys. 126, 025101 (2019).
(
10.1063/1.5094580
) / J. Appl. Phys. by Q Zhang (2019) -
Dupuy, A. D., Wang, X. & Schoenung, J. M. Entropic phase transformation in nanocrystalline high entropy oxides. Mater. Res. Lett. 7, 60–67 (2019).
(
10.1080/21663831.2018.1554605
) / Mater. Res. Lett. by AD Dupuy (2019) -
Sarkar, A. et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747–754 (2017).
(
10.1016/j.jeurceramsoc.2016.09.018
) / J. Eur. Ceram. Soc. by A Sarkar (2017) -
Chen, H. et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129–11133 (2018).
(
10.1039/C8TA01772G
) / J. Mater. Chem. A by H Chen (2018) -
Biesuz, M., Spiridigliozzi, L., Dell’Agli, G., Bortolotti, M. & Sglavo, V. M. Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci. 53, 8074–8085 (2018).
(
10.1007/s10853-018-2168-9
) / J. Mater. Sci. by M Biesuz (2018) -
Mao, A. et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 484, 245–252 (2019).
(
10.1016/j.jmmm.2019.04.023
) / J. Magn. Magn. Mater. by A Mao (2019) -
Chen, H. et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater. Lett. 1, 83–88 (2019).
(
10.1021/acsmaterialslett.9b00064
) / ACS Mater. Lett. by H Chen (2019) -
Balcerzak, M., Kawamura, K., Bobrowski, R., Rutkowski, P. & Brylewski, T. Mechanochemical synthesis of (Co,Cu,Mg,Ni,Zn)O high-entropy oxide and its physicochemical properties. J. Elec. Mater. 48, 7105–7113 (2019).
(
10.1007/s11664-019-07512-z
) / J. Elec. Mater. by M Balcerzak (2019) -
Kotsonis, G. N., Rost, C. M., Harris, D. T. & Maria, J.-P. Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment. MRS Commun. 8, 1371–1377 (2018).
(
10.1557/mrc.2018.184
) / MRS Commun. by GN Kotsonis (2018) -
Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).
(
10.1038/natrevmats.2016.103
) / Nat. Rev. Mater. by A Manthiram (2017) -
Meisenheimer, P. B. et al. Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 3, 104420 (2019).
(
10.1103/PhysRevMaterials.3.104420
) / Phys. Rev. Mater. by PB Meisenheimer (2019) -
Hong, W. et al. Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. J. Amer. Ceram. Soc. 102, 2228–2237 (2019).
(
10.1111/jace.16075
) / J. Amer. Ceram. Soc. by W Hong (2019) -
Diercks, D. R., Brennecka, G., Gorman, B. P., Rost, C. M. & Maria, J.-P. Nanoscale compositional analysis of a thermally processed entropy-stabilized oxide via correlative TEM and APT. Microsc. Microanal. 23, 1640–1641 (2017).
(
10.1017/S1431927617008868
) / Microsc. Microanal. by DR Diercks (2017) -
Meisenheimer, P. B., Kratofil, T. J. & Heron, J. T. Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 13344 (2017).
(
10.1038/s41598-017-13810-5
) / Sci. Rep. by PB Meisenheimer (2017) -
Jimenez-Segura, M. P. et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides. Appl. Phys. Lett. 114, 122401 (2019).
(
10.1063/1.5091787
) / Appl. Phys. Lett. by MP Jimenez-Segura (2019) -
Zhang, J. et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31, 3705–3711 (2019).
(
10.1021/acs.chemmater.9b00624
) / Chem. Mater. by J Zhang (2019) -
Djenadic, R. et al. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5, 102–109 (2017).
(
10.1080/21663831.2016.1220433
) / Mater. Res. Lett. by R Djenadic (2017) -
Sarkar, A. et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46, 12167–12176 (2017).
(
10.1039/C7DT02077E
) / Dalton Trans. by A Sarkar (2017) -
Gild, J. et al. High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38, 3578–3584 (2018).
(
10.1016/j.jeurceramsoc.2018.04.010
) / J. Eur. Ceram. Soc. by J Gild (2018) -
Chen, K. et al. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 38, 4161–4164 (2018).
(
10.1016/j.jeurceramsoc.2018.04.063
) / J. Eur. Ceram. Soc. by K Chen (2018) -
Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).
(
10.1016/j.scriptamat.2017.08.040
) / Scr. Mater. by S Jiang (2018) -
Biesuz, M. et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering. J. Asian Ceram. Soc. 7, 127–132 (2019).
(
10.1080/21870764.2019.1595931
) / J. Asian Ceram. Soc. by M Biesuz (2019) -
Oses, C., Toher, C. & Curtarolo, S. Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery. MRS Bull. 43, 670–675 (2018).
(
10.1557/mrs.2018.207
) / MRS Bull. by C Oses (2018) -
Mehl, M. J. et al. The AFLOW library of crystallographic prototypes: part 1. Comput. Mater. Sci. 136, S1–S828 (2017).
(
10.1016/j.commatsci.2017.01.017
) / Comput. Mater. Sci. by MJ Mehl (2017) -
Hicks, D. et al. The AFLOW library of crystallographic prototypes: part 2. Comput. Mater. Sci. 161, S1–S1011 (2019).
(
10.1016/j.commatsci.2018.10.043
) / Comput. Mater. Sci. by D Hicks (2019) -
Witte, R. et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 034406 (2019).
(
10.1103/PhysRevMaterials.3.034406
) / Phys. Rev. Mater. by R Witte (2019) -
Dąbrowa, J. et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018).
(
10.1016/j.matlet.2017.12.148
) / Mater. Lett. by J Dąbrowa (2018) -
Mao, A. et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 1194, 11–18 (2019).
(
10.1016/j.molstruc.2019.05.073
) / J. Mol. Struct. by A Mao (2019) -
Mao, A. et al. A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 497, 165884 (2020).
(
10.1016/j.jmmm.2019.165884
) / J. Magn. Magn. Mater. by A Mao (2020) -
Vinnik, D. A. et al. High-entropy oxide phases with magnetoplumbite structure. Ceram. Int. 45, 12942–12948 (2019).
(
10.1016/j.ceramint.2019.03.221
) / Ceram. Int. by DA Vinnik (2019) -
Vinnik, D. A. et al. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: synthesis, structure, properties, prospects. Nanomater. 9, 559 (2019).
(
10.3390/nano9040559
) / Nanomater. by DA Vinnik (2019) -
Tseng, K.-P., Yang, Q., McCormack, S. J. & Kriven, W. M. High-entropy, phase-constrained, lanthanide sesquioxide. J. Amer. Ceram. Soc. 103, 569–576 (2019).
(
10.1111/jace.16689
) / J. Amer. Ceram. Soc. by K-P Tseng (2019) -
Chen, H., Xiang, H., Dai, F.-Z., Liu, J. & Zhou, Y. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 36, 134–139 (2020).
(
10.1016/j.jmst.2019.07.022
) / J. Mater. Sci. Technol. by H Chen (2020) -
Zhao, Z., Xiang, H., Dai, F.-Z., Peng, Z. & Zhou, Y. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol. 35, 2647–2651 (2019).
(
10.1016/j.jmst.2019.05.054
) / J. Mater. Sci. Technol. by Z Zhao (2019) -
Li, F., Zhou, L., Liu, J.-X., Liang, Y. & Zhang, G.-J. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 8, 576–582 (2019).
(
10.1007/s40145-019-0342-4
) / J. Adv. Ceram. by F Li (2019) -
Zhang, J. et al. High-entropy oxides 10La2O3–20TiO2–10Nb2O5–20WO3–20ZrO2 amorphous spheres prepared by containerless solidification. Mater. Lett. 244, 167–170 (2019).
(
10.1016/j.matlet.2019.01.017
) / Mater. Lett. by J Zhang (2019) -
Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).
(
10.1016/j.scriptamat.2018.10.049
) / Scr. Mater. by L Feng (2019) -
Ye, B., Ning, S., Liu, D., Wen, T. & Chu, Y. One-step synthesis of coral-like high-entropy metal carbide powders. J. Amer. Ceram. Soc. 102, 6372–6378 (2019).
(
10.1111/jace.16514
) / J. Amer. Ceram. Soc. by B Ye (2019) -
Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Low-temperature sintering of single-phase, high-entropy carbide ceramics. J. Amer. Ceram. Soc. 102, 7217–7224 (2019).
(
10.1111/jace.16672
) / J. Amer. Ceram. Soc. by L Feng (2019) -
Wei, X.-F. et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 39, 2989–2994 (2019).
(
10.1016/j.jeurceramsoc.2019.04.006
) / J. Eur. Ceram. Soc. by X-F Wei (2019) -
Liu, D., Wen, T., Ye, B. & Chu, Y. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 167, 110–114 (2019).
(
10.1016/j.scriptamat.2019.03.038
) / Scr. Mater. by D Liu (2019) -
Zhang, Y. et al. Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164, 135–139 (2019).
(
10.1016/j.scriptamat.2019.01.021
) / Scr. Mater. by Y Zhang (2019) -
Zhang, Y. et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 39, 3920–3924 (2019).
(
10.1016/j.jeurceramsoc.2019.05.017
) / J. Eur. Ceram. Soc. by Y Zhang (2019) -
Liu, D., Liu, H., Ning, S., Ye, B. & Chu, Y. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. J. Amer. Ceram. Soc. 102, 7071–7076 (2019).
(
10.1111/jace.16746
) / J. Amer. Ceram. Soc. by D Liu (2019) -
Chicardi, E., García-Garrido, C. & Gotor, F. J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 45, 21858–21863 (2019).
(
10.1016/j.ceramint.2019.07.195
) / Ceram. Int. by E Chicardi (2019) -
Qiu, N. et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 777, 767–774 (2019).
(
10.1016/j.jallcom.2018.11.049
) / J. Alloys Compd. by N Qiu (2019) -
Wang, Q. et al. High entropy oxides as anode material for Li-ion battery applications: a practical approach. Electrochem. Commun. 100, 121–125 (2019).
(
10.1016/j.elecom.2019.02.001
) / Electrochem. Commun. by Q Wang (2019) -
Lu, X. et al. Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).
(
10.1002/aenm.201300994
) / Adv. Energy Mater. by X Lu (2014) -
Zhai, S. et al. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172–2178 (2018).
(
10.1039/C8EE00050F
) / Energy Environ. Sci. by S Zhai (2018) -
Zhang, G. et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018).
(
10.1016/j.electacta.2018.05.035
) / Electrochim. Acta by G Zhang (2018) -
Wang, A.-L., Wan, H.-C., Xu, H., Tong, Y.-X. & Li, G.-R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 127, 448–453 (2014).
(
10.1016/j.electacta.2014.02.076
) / Electrochim. Acta by A-L Wang (2014) -
Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).
(
10.1002/aenm.201802269
) / Adv. Energy Mater. by T Löffler (2018) -
Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).
(
10.1016/j.joule.2018.12.015
) / Joule by TAA Batchelor (2019) -
Cui, X., Zhang, B., Zeng, C. & Guo, S. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Commun. 8, 1230–1235 (2018).
(
10.1557/mrc.2018.111
) / MRS Commun. by X Cui (2018) - Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019). / Nat. Commun. by P Xie (2019)
-
Yusenko, K. V. et al. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22–27 (2017).
(
10.1016/j.scriptamat.2017.05.022
) / Scr. Mater. by KV Yusenko (2017) -
Qiu, H.-J. et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019).
(
10.1039/C9TA00505F
) / J. Mater. Chem. A by H-J Qiu (2019) -
Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).
(
10.1126/science.aan5412
) / Science by Y Yao (2018) - Lv, Z. Y. et al. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 6, 34213 (2016). / Sci. Rep. by ZY Lv (2016)
-
Zhang, Z. et al. Mechanochemical nonhydrolytic sol–gel-strategy for the production of mesoporous multimetallic oxides. Chem. Mater. 31, 5529–5536 (2019).
(
10.1021/acs.chemmater.9b01244
) / Chem. Mater. by Z Zhang (2019) -
Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).
(
10.1126/science.1168049
) / Science by K Gong (2009) -
Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).
(
10.1126/science.1170051
) / Science by M Lefèvre (2009) -
Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011).
(
10.1039/C0EE00011F
) / Energy Environ. Sci. by F Jaouen (2011) -
Li, Y. et al. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012).
(
10.1038/nnano.2012.72
) / Nat. Nanotechnol. by Y Li (2012) -
Banham, D. et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015).
(
10.1016/j.jpowsour.2015.03.047
) / J. Power Sources by D Banham (2015) -
Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).
(
10.1038/s41929-017-0017-x
) / Nat. Catal. by Z Lu (2018) -
Venkadesan, G. & Muthusamy, J. Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine. Ceram. Int. 45, 3166–3176 (2019).
(
10.1016/j.ceramint.2018.10.218
) / Ceram. Int. by G Venkadesan (2019) -
Roychowdhury, S., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Stabilizing n-type cubic GeSe by entropy-driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. 57, 15167–15171 (2018).
(
10.1002/anie.201809841
) / Angew. Chem. Int. Ed. by S Roychowdhury (2018) -
Yang, Y.-C., Tsau, C.-H. & Yeh, J.-W. TiFeCoNi oxide thin film — a new composition with extremely low electrical resistivity at room temperature. Scr. Mater. 64, 173–176 (2011).
(
10.1016/j.scriptamat.2010.09.037
) / Scr. Mater. by Y-C Yang (2011) -
Tsau, C.-H., Yang, Y.-C., Lee, C.-C., Wu, L.-Y. & Huang, H.-J. The low electrical resistivity of the high-entropy alloy oxide thin films. Procedia Eng. 36, 246–252 (2012).
(
10.1016/j.proeng.2012.03.037
) / Procedia Eng. by C-H Tsau (2012) -
Dedoncker, R., Radnóczi, G., Abadias, G. & Depla, D. Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures. Surf. Coat. Technol. 378, 124362 (2019).
(
10.1016/j.surfcoat.2019.02.045
) / Surf. Coat. Technol. by R Dedoncker (2019) -
Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C. R. & Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 211, 117–121 (2012).
(
10.1016/j.surfcoat.2011.09.033
) / Surf. Coat. Technol. by V Braic (2012) -
Lin, M.-I., Tsai, M.-H., Shen, W.-J. & Yeh, J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films 518, 2732–2737 (2010).
(
10.1016/j.tsf.2009.10.142
) / Thin Solid Films by M-I Lin (2010) -
Tsai, M.-H., Wang, C.-W., Lai, C.-H., Yeh, J.-W. & Gan, J.-Y. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett. 92, 052109 (2008).
(
10.1063/1.2841810
) / Appl. Phys. Lett. by M-H Tsai (2008) -
Chang, S.-Y., Li, C.-E., Chiang, S.-C. & Huang, Y.-C. 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects. J. Alloys Compd. 515, 4–7 (2012).
(
10.1016/j.jallcom.2011.11.082
) / J. Alloys Compd. by S-Y Chang (2012) -
Chang, S.-Y., Chen, M.-K. & Chen, D.-S. Multiprincipal-element AlCrTaTiZr–nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. J. Electrochem. Soc. 156, G37–G42 (2009).
(
10.1149/1.3097186
) / J. Electrochem. Soc. by S-Y Chang (2009) -
Chang, S.-Y. et al. Improved diffusion-resistant ability of multicomponent nitrides: from unitary TiN to senary high-entropy (TiTaCrZrAlRu)N. JOM 65, 1790–1796 (2013).
(
10.1007/s11837-013-0676-2
) / JOM by S-Y Chang (2013) -
Sharma, Y. et al. Single-crystal high entropy perovskite oxide epitaxial films. Phys. Rev. Mater. 2, 060404 (2018).
(
10.1103/PhysRevMaterials.2.060404
) / Phys. Rev. Mater. by Y Sharma (2018) -
Braic, V. et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197–205 (2012).
(
10.1016/j.jmbbm.2012.02.020
) / J. Mech. Behav. Biomed. Mater. by V Braic (2012) -
Wang, Y., Jie, W., Yang, C., Wei, X. & Hao, J. Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Func. Mater. 29, 1808118 (2019).
(
10.1002/adfm.201808118
) / Adv. Func. Mater. by Y Wang (2019) -
Leyland, A. & Matthews, A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246, 1–11 (2000).
(
10.1016/S0043-1648(00)00488-9
) / Wear by A Leyland (2000) -
Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).
(
10.1038/nature17981
) / Nature by Z Li (2016) - Troparevsky, M. C., Morris, J. R., Kent, P. R. C., Lupini, A. R. & Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015). / Phys. Rev. X by MC Troparevsky (2015)
- Widom, M. in High-Entropy Alloys: Fundamentals and Applications Ch. 8 (eds Gao, M. C., Yeh, J.-W., Liaw, P. K. & Zhang, Y.) 267–298 (Springer, 2016).
-
Huhn, W. P. & Widom, M. Prediction of A2 to B2 phase transition in the high entropy alloy Mo–Nb–Ta–W. JOM 65, 1772–1779 (2013).
(
10.1007/s11837-013-0772-3
) / JOM by WP Huhn (2013) -
Widom, M. Entropy and diffuse scattering: comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47, 3306–3311 (2016).
(
10.1007/s11661-015-3095-x
) / Metall. Mater. Trans. A by M Widom (2016) - de Fontaine, D. in Solid State Physics Vol. 47 Ch. 2 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Academic Press, 1994).
-
van de Walle, A. & Asta, M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Model. Simul. Mater. Sci. Eng. 10, 521 (2002).
(
10.1088/0965-0393/10/5/304
) / Model. Simul. Mater. Sci. Eng. by A van de Walle (2002) -
Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials (Wiley, 2005).
(
10.1002/0471749311
) -
Ye, B., Wen, T., Huang, K., Wang, C.-Z. & Chu, Y. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J. Amer. Ceram. Soc. 102, 4344–4352 (2019).
(
10.1111/jace.16295
) / J. Amer. Ceram. Soc. by B Ye (2019) -
Demirskyi, D. et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr. Mater. 164, 12–16 (2019).
(
10.1016/j.scriptamat.2019.01.024
) / Scr. Mater. by D Demirskyi (2019) -
Peng, C. et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl. Phys. Lett. 114, 011905 (2019).
(
10.1063/1.5054954
) / Appl. Phys. Lett. by C Peng (2019) -
Zhang, H. & Akhtar, F. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy 21, 474 (2019).
(
10.3390/e21050474
) / Entropy by H Zhang (2019) -
Zhang, H., Hedman, D., Feng, P., Han, G. & Akhtar, F. A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite. Dalton Trans. 48, 5161–5167 (2019).
(
10.1039/C8DT04555K
) / Dalton Trans. by H Zhang (2019) -
Lai, C.-H., Cheng, K.-H., Lin, S.-J. & Yeh, J.-W. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coat. Technol. 202, 3732–3738 (2008).
(
10.1016/j.surfcoat.2008.01.014
) / Surf. Coat. Technol. by C-H Lai (2008) -
Lin, C. H., Duh, J. G. & Yeh, J.-W. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf. Coat. Technol. 201, 6304–6308 (2007).
(
10.1016/j.surfcoat.2006.11.041
) / Surf. Coat. Technol. by CH Lin (2007) -
Lin, C. H. & Duh, J. G. Corrosion behavior of (Ti–Al–Cr–Si–V)xNy coatings on mild steels derived from RF magnetron sputtering. Surf. Coat. Technol. 203, 558–561 (2008).
(
10.1016/j.surfcoat.2008.04.067
) / Surf. Coat. Technol. by CH Lin (2008) -
Chang, H.-W. et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf. Coat. Technol. 202, 3360–3366 (2008).
(
10.1016/j.surfcoat.2007.12.014
) / Surf. Coat. Technol. by H-W Chang (2008) -
Huang, P.-K. & Yeh, J.-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 203, 1891–1896 (2009).
(
10.1016/j.surfcoat.2009.01.016
) / Surf. Coat. Technol. by P-K Huang (2009) -
Hsieh, T. H., Hsu, C. H., Wu, C. Y., Kao, J. Y. & Hsu, C. Y. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr. Appl. Phys. 18, 512–518 (2018).
(
10.1016/j.cap.2018.02.015
) / Curr. Appl. Phys. by TH Hsieh (2018) -
Liang, S.-C. et al. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings. Appl. Surf. Sci. 257, 7709–7713 (2011).
(
10.1016/j.apsusc.2011.04.014
) / Appl. Surf. Sci. by S-C Liang (2011) -
Cheng, K.-H., Lai, C.-H., Lin, S.-J. & Yeh, J.-W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid. Films 519, 3185–3190 (2011).
(
10.1016/j.tsf.2010.11.034
) / Thin Solid. Films by K-H Cheng (2011) -
Chang, S.-Y., Lin, S.-Y. & Huang, Y.-C. Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings. Thin Solid. Films 519, 4865–4869 (2011).
(
10.1016/j.tsf.2011.01.043
) / Thin Solid. Films by S-Y Chang (2011) -
Lin, S.-Y., Chang, S.-Y., Huang, Y.-C., Shieu, F.-S. & Yeh, J.-W. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surf. Coat. Technol. 206, 5096–5102 (2012).
(
10.1016/j.surfcoat.2012.06.035
) / Surf. Coat. Technol. by S-Y Lin (2012) -
Lee, C.-T. et al. Effects of DC bias on the microstructure, residual stress and hardness properties of TiVCrZrTaN films by reactive RF magnetron sputtering. Proc. Eng. 36, 316–321 (2012).
(
10.1016/j.proeng.2012.03.046
) / Proc. Eng. by C-T Lee (2012) -
Chang, Z.-C., Tsai, D.-C. & Chen, E.-C. Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings. Mater. Sci. Semiconductor Proc. 39, 30–39 (2015).
(
10.1016/j.mssp.2015.04.045
) / Mater. Sci. Semiconductor Proc. by Z-C Chang (2015) -
Hsueh, H.-T., Shen, W.-J., Tsai, M.-H. & Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surf. Coat. Technol. 206, 4106–4112 (2012).
(
10.1016/j.surfcoat.2012.03.096
) / Surf. Coat. Technol. by H-T Hsueh (2012) -
Sobol’, O. V. et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti–V–Zr–Nb–Hf system and related superhard nitrides formed by the vacuum-arc method. Tech. Phys. Lett. 38, 616–619 (2012).
(
10.1134/S1063785012070127
) / Tech. Phys. Lett. by OV Sobol’ (2012) -
Pogrebnjak, A. D. et al. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions. Mater. Chem. Phys. 147, 1079–1091 (2014).
(
10.1016/j.matchemphys.2014.06.062
) / Mater. Chem. Phys. by AD Pogrebnjak (2014) -
Tsai, C.-W. et al. Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid. Films 520, 2613–2618 (2012).
(
10.1016/j.tsf.2011.11.025
) / Thin Solid. Films by C-W Tsai (2012) -
Braic, M., Balaceanu, M., Vladescu, A., Zoita, C. N. & Braic, V. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl. Surf. Sci. 284, 671–678 (2013).
(
10.1016/j.apsusc.2013.07.152
) / Appl. Surf. Sci. by M Braic (2013) -
Tsai, D.-C. et al. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering. Appl. Surf. Sci. 282, 789–797 (2013).
(
10.1016/j.apsusc.2013.06.057
) / Appl. Surf. Sci. by D-C Tsai (2013) -
Gorban’, V. F. et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. J. Superhard Mater. 39, 166–171 (2017).
(
10.3103/S1063457617030030
) / J. Superhard Mater. by VF Gorban’ (2017) -
Malinovskis, P. et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des. 149, 51–62 (2018).
(
10.1016/j.matdes.2018.03.068
) / Mater. Des. by P Malinovskis (2018) -
Jhong, Y.-S., Huang, C.-W. & Lin, S.-J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater. Chem. Phys. 210, 348–352 (2018).
(
10.1016/j.matchemphys.2017.08.002
) / Mater. Chem. Phys. by Y-S Jhong (2018) -
Mayrhofer, P. H., Kirnbauer, A., Ertelthaler, Ph. & Koller, C. M. High-entropy ceramic thin films; a case study on transition metal diborides. Scr. Mater. 149, 93–97 (2018).
(
10.1016/j.scriptamat.2018.02.008
) / Scr. Mater. by PH Mayrhofer (2018) -
Chang, S.-Y. & Chen, D.-S. 10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900 °C. Appl. Phys. Lett. 94, 231909 (2009).
(
10.1063/1.3155196
) / Appl. Phys. Lett. by S-Y Chang (2009) -
Liang, S.-C. et al. Thermally stable TiVCrZrHf nitride films as diffusion barriers in copper metallization. Electrochem. Solid-State Lett. 15, H5–H8 (2012).
(
10.1149/2.012201esl
) / Electrochem. Solid-State Lett. by S-C Liang (2012) -
Tsai, D.-C. et al. Interfacial reactions and characterization of (TiVCrZrHf)N thin films during thermal treatment. Surf. Coat. Technol. 240, 160–166 (2014).
(
10.1016/j.surfcoat.2013.12.034
) / Surf. Coat. Technol. by D-C Tsai (2014) - Tsau, C.-H., Hwang, Z.-Y. & Chen, S.-K. The microstructures and electrical resistivity of (Al, Cr, Ti)FeCoNiOx high-entropy alloy oxide thin films. Adv. Mater. Sci. Eng. 2015, 353140 (2015). / Adv. Mater. Sci. Eng. by C-H Tsau (2015)
-
Dinu, M. et al. In vitro corrosion resistance of Si containing multi-principal element carbide coatings. Mater. Corros. 67, 908–914 (2016).
(
10.1002/maco.201508788
) / Mater. Corros. by M Dinu (2016) -
Sarkar, A. et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31, 1806236 (2019).
(
10.1002/adma.201806236
) / Adv. Mater. by A Sarkar (2019) -
Chellali, M. R. et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scr. Mater. 166, 58–63 (2019).
(
10.1016/j.scriptamat.2019.02.039
) / Scr. Mater. by MR Chellali (2019) -
Urban, A., Abdellahi, A., Dacek, S., Artrith, N. & Ceder, G. Electronic-structure origin of cation disorder in transition-metal oxides. Phys. Rev. Lett. 119, 176402 (2017).
(
10.1103/PhysRevLett.119.176402
) / Phys. Rev. Lett. by A Urban (2017)
Dates
Type | When |
---|---|
Created | 5 years, 6 months ago (Feb. 12, 2020, 3:02 p.m.) |
Deposited | 1 year, 10 months ago (Sept. 26, 2023, 3:44 p.m.) |
Indexed | 8 hours, 21 minutes ago (Aug. 22, 2025, 1:01 a.m.) |
Issued | 5 years, 6 months ago (Feb. 12, 2020) |
Published | 5 years, 6 months ago (Feb. 12, 2020) |
Published Online | 5 years, 6 months ago (Feb. 12, 2020) |
@article{Oses_2020, title={High-entropy ceramics}, volume={5}, ISSN={2058-8437}, url={http://dx.doi.org/10.1038/s41578-019-0170-8}, DOI={10.1038/s41578-019-0170-8}, number={4}, journal={Nature Reviews Materials}, publisher={Springer Science and Business Media LLC}, author={Oses, Corey and Toher, Cormac and Curtarolo, Stefano}, year={2020}, month=feb, pages={295–309} }