Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Materials (297)
Authors
4
- Artem R. Oganov (first)
- Chris J. Pickard (additional)
- Qiang Zhu (additional)
- Richard J. Needs (additional)
References
238
Referenced
552
-
Oganov, A. R. (ed.) Modern Methods of Crystal Structure Prediction (John Wiley & Sons, 2011).
(
10.1002/9783527632831
) - Atahan-Evrenk, S. & Aspuru-Guzik, A. Topics in Current Chemistry Vol. 345 (Springer, 2014).
-
Oganov, A. R., Saleh, G. & Kvashnin, A. G. Computational Materials Discovery (Royal Society of Chemistry, 2018).
(
10.1039/9781788010122
) -
Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66–69 (1983).
(
10.1021/ci00038a003
) / J. Chem. Inf. Comput. Sci. by G Bergerhoff (1983) -
Villars, P. et al. The Pauling file, binaries edition. J. Alloys Compd. 367, 293–297 (2004).
(
10.1016/j.jallcom.2003.08.058
) / J. Alloys Compd. by P Villars (2004) -
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
(
10.1038/nmat3568
) / Nat. Mater. by S Curtarolo (2013) -
Nosengo, N. Can artificial intelligence create the next wonder material? Nature 533, 22–25 (2016).
(
10.1038/533022a
) / Nature by N Nosengo (2016) -
Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).
(
10.1038/natrevmats.2015.4
) / Nat. Rev. Mater. by A Jain (2016) -
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
(
10.1038/s41586-018-0337-2
) / Nature by KT Butler (2018) -
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).
(
10.1073/pnas.1704505114
) / Proc. Natl Acad. Sci. USA by H Liu (2017) - Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride at high pressures. Preprint at arXiv https://arxiv.org/abs/1812.01561 (2018).
-
Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
(
10.1103/PhysRevLett.122.027001
) / Phys. Rev. Lett. by M Somayazulu (2019) -
Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2004).
(
10.1017/CBO9780511805769
) - Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2004).
-
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).
(
10.1088/0953-8984/23/5/053201
) / J. Phys. Condens. Matter by CJ Pickard (2011) -
Martiniani, S., Schrenk, K. J., Stevenson, J. D., Wales, D. J. & Frenkel, D. Structural analysis of high-dimensional basins of attraction. Phys. Rev. E 94, 031301 (2016).
(
10.1103/PhysRevE.94.031301
) / Phys. Rev. E by S Martiniani (2016) -
Stevanovic, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).
(
10.1103/PhysRevLett.116.075503
) / Phys. Rev. Lett. by V Stevanovic (2016) -
Oganov, A. R. & Valle, M. How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504 (2009).
(
10.1063/1.3079326
) / J. Chem. Phys. by AR Oganov (2009) -
Ceriotti, M., Tribello, G. A. & Parrinello, M. Demonstrating the transferability and the descriptive power of sketch-map. J. Chem. Theory Comput. 9, 1521–1532 (2013).
(
10.1021/ct3010563
) / J. Chem. Theory Comput. by M Ceriotti (2013) -
Pettifor, D. A chemical scale for crystal-structure maps. Solid State Commun. 51, 31–34 (1984).
(
10.1016/0038-1098(84)90765-8
) / Solid State Commun. by D Pettifor (1984) - Villars, P. A. A three-dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds: II. J. Alloys Compd. 99, 33 (1984). / J. Alloys Compd. by PA Villars (1984)
-
Isayev, O. et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27, 735–743 (2015).
(
10.1021/cm503507h
) / Chem. Mater. by O Isayev (2015) - Kitaigorodsky, A. I. The close-packing of molecules in crystals of organic compounds. J. Phys. 9, 351–352 (1945). / J. Phys. by AI Kitaigorodsky (1945)
-
Nowacki, W. Symmetrie und physikalisch-chemische Eigenschaften krystallisierter Verbindungen. I. Die Verteilung der Kristallstrukturen über die 219 Raumgruppen. Helv. Chim. Acta 25, 863–878 (1942).
(
10.1002/hlca.19420250509
) / Helv. Chim. Acta by W Nowacki (1942) -
Baur, W. & Kassner, D. The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Cryst. B 48, 356–369 (1992).
(
10.1107/S0108768191014726
) / Acta Cryst. B by W Baur (1992) -
Urusov, V. S. & Nadezhina, T. N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 50, 22–37 (2009).
(
10.1007/s10947-009-0186-9
) / J. Struct. Chem. by VS Urusov (2009) -
Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).
(
10.1021/ja01379a006
) / J. Am. Chem. Soc. by L Pauling (1929) -
Villars, P. & Iwata, S. Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number. Chem. Met. Alloys 6, 81–108 (2013).
(
10.30970/cma6.0269
) / Chem. Met. Alloys by P Villars (2013) - Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016). / Sci. Adv. by W Sun (2016)
-
Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).
(
10.1126/science.1244989
) / Science by W Zhang (2013) -
Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).
(
10.1038/nchem.2716
) / Nat. Chem. by X Dong (2017) - Niu, H., Oganov, A. R., Chen, X.-Q. & Li, D. Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures. Sci. Rep. 5, 18347 (2015). / Sci. Rep. by H Niu (2015)
-
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).
(
10.1063/1.2210932
) / J. Chem. Phys. by AR Oganov (2006) -
Valle, M. & Oganov, A. R. Crystal fingerprint space – a novel paradigm for studying crystal-structure sets. Acta Cryst. A 66, 507–517 (2010).
(
10.1107/S0108767310026395
) / Acta Cryst. A by M Valle (2010) -
Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48 (1999).
(
10.1103/PhysRevE.59.48
) / Phys. Rev. E by FH Stillinger (1999) -
Freeman, C., Newsam, J., Levine, S. & Catlow, C. R. A. Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide. J. Mater. Chem. 3, 531–535 (1993).
(
10.1039/jm9930300531
) / J. Mater. Chem. by C Freeman (1993) - Schmidt, M. U. & Englert, U. Prediction of crystal structures. J. Chem. Soc. 1996, 2077–2082 (1996). / J. Chem. Soc. by MU Schmidt (1996)
-
Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).
(
10.1103/PhysRevLett.97.045504
) / Phys. Rev. Lett. by CJ Pickard (2006) -
Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works - and why. Acc. Chem. Res. 44, 227–237 (2011).
(
10.1021/ar1001318
) / Acc. Chem. Res. by AR Oganov (2011) -
Deaven, D. M. & Ho, K.-M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288 (1995).
(
10.1103/PhysRevLett.75.288
) / Phys. Rev. Lett. by DM Deaven (1995) -
Call, S. T., Zubarev, D. Y. & Boldyrev, A. I. Global minimum structure searches via particle swarm optimization. J. Comput. Chem. 28, 1177–1186 (2007).
(
10.1002/jcc.20621
) / J. Comput. Chem. by ST Call (2007) -
Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).
(
10.1103/PhysRevB.82.094116
) / Phys. Rev. B by Y Wang (2010) -
Lonie, D. C. & Zurek, E. Xtalopt: an open-source evolutionary algorithm for crystal structure prediction. Comp. Phys. Comm. 182, 372–387 (2011).
(
10.1016/j.cpc.2010.07.048
) / Comp. Phys. Comm. by DC Lonie (2011) -
Tipton, W. W. & Hennig, R. G. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials. J. Phys. Condens. Matter 25, 495401 (2013).
(
10.1088/0953-8984/25/49/495401
) / J. Phys. Condens. Matter by WW Tipton (2013) -
Martonak, R., Laio, A. & Parrinello, M. Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).
(
10.1103/PhysRevLett.90.075503
) / Phys. Rev. Lett. by R Martonak (2003) -
Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004).
(
10.1063/1.1724816
) / J. Chem. Phys. by S Goedecker (2004) -
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
(
10.1063/1.3512900
) / J. Chem. Phys. by M Amsler (2010) -
Zhou, X.-F., Oganov, A. R., Qian, G.-R. & Zhu, Q. First-principles determination of the structure of magnesium borohydride. Phys. Rev. Lett. 109, 245503 (2012).
(
10.1103/PhysRevLett.109.245503
) / Phys. Rev. Lett. by X-F Zhou (2012) -
Meredig, B. & Wolverton, C. A hybrid computational–experimental approach for automated crystal structure solution. Nat. Mater. 12, 123–127 (2013).
(
10.1038/nmat3490
) / Nat. Mater. by B Meredig (2013) -
Fortes, A. D., Suard, E., Lemee-Cailleau, M.-H., Pickard, C. J. & Needs, R. J. Crystal structure of ammonia monohydrate phase II. J. Am. Chem. Soc. 131, 13508 (2009).
(
10.1021/ja9052569
) / J. Am. Chem. Soc. by AD Fortes (2009) -
Naslain, R. & Kasper, J. S. The crystal structure of the phi phase in the boron-sodium system. J. Solid State Chem. 1, 150–151 (1970).
(
10.1016/0022-4596(70)90006-X
) / J. Solid State Chem. by R Naslain (1970) -
Albert, B. A new old: sodium boride: Linked pentagonal bipyramids and octahedra in Na3B20. Angew. Chem. Int. Ed. 37, 1117–1118 (1998).
(
10.1002/(SICI)1521-3773(19980504)37:8<1117::AID-ANIE1117>3.0.CO;2-X
) / Angew. Chem. Int. Ed. by B Albert (1998) -
He, X.-L. et al. Predicting the ground-state structure of sodium boride. Phys. Rev. B 97, 100102 (2018).
(
10.1103/PhysRevB.97.100102
) / Phys. Rev. B by X-L He (2018) -
Li, Y.-F. & Selloni, A. Mosaic texture and double c-axis periodicity of β-NiOOH: insights from first-principles and genetic algorithm calculations. J. Chem. Phys. Lett. 5, 3981–3985 (2014).
(
10.1021/jz502127g
) / J. Chem. Phys. Lett. by Y-F Li (2014) -
Zakaryan, H. A., Kvashnin, A. G. & Oganov, A. R. Stable reconstruction of the (110) surface and its role in pseudocapacitance of rutile-like RuO2. Sci. Rep. 7, 10357 (2017).
(
10.1038/s41598-017-10331-z
) / Sci. Rep. by HA Zakaryan (2017) -
Morris, A. J., Grey, C. & Pickard, C. J. Thermodynamically stable lithium silicides and germanides from density functional theory calculations. Phys. Rev. B 90, 054111 (2014).
(
10.1103/PhysRevB.90.054111
) / Phys. Rev. B by AJ Morris (2014) -
Jung, H. et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries. Chem. Mater. 27, 1031–1041 (2015).
(
10.1021/cm504312x
) / Chem. Mater. by H Jung (2015) -
Filinchuk, Y. et al. Porous and dense magnesium boro-hydride frameworks: synthesis, stability, and reversible absorption of guest species. Angew. Chem. Int. Ed. 50, 11162–11166 (2011).
(
10.1002/anie.201100675
) / Angew. Chem. Int. Ed. by Y Filinchuk (2011) -
Zeng, Z. et al. A novel phase of Li15Si4 synthesized under pressure. Adv. Eng. Mater. 5, 1500214 (2015).
(
10.1002/aenm.201500214
) / Adv. Eng. Mater. by Z Zeng (2015) -
Akahama, Y., Mizuki, Y., Nakano, S., Hirao, N. & Ohishi, Y. Raman scattering and X-ray diffraction studies on phase III of solid hydrogen. J. Phys. Conf. Ser. 950, 042060 (2017).
(
10.1088/1742-6596/950/4/042060
) / J. Phys. Conf. Ser. by Y Akahama (2017) -
Howie, R. T., Dalladay-Simpson, P. & Gregoryanz, E. Raman spectroscopy of hot hydrogen above 200 GPa. Nat. Mater. 14, 495–499 (2015).
(
10.1038/nmat4213
) / Nat. Mater. by RT Howie (2015) -
Akahama, Y. et al. Evidence from X-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101 (2010).
(
10.1103/PhysRevB.82.060101
) / Phys. Rev. B by Y Akahama (2010) -
Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 Gigapascals. Nature 529, 63–67 (2016).
(
10.1038/nature16164
) / Nature by P Dalladay-Simpson (2016) -
Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).
(
10.1038/nphys625
) / Nat. Phys. by CJ Pickard (2007) -
Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of solid hydrogen. Phys. Rev. B 94, 134101 (2016).
(
10.1103/PhysRevB.94.134101
) / Phys. Rev. B by B Monserrat (2016) -
Monserrat, B. et al. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett. 120, 255701 (2018).
(
10.1103/PhysRevLett.120.255701
) / Phys. Rev. Lett. by B Monserrat (2018) -
Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885 (2012).
(
10.1103/RevModPhys.84.885
) / Rev. Mod. Phys. by T Bartels-Rausch (2012) -
Falenty, A., Hansen, T. C. & Kuhs, W. F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516, 231–233 (2014).
(
10.1038/nature14014
) / Nature by A Falenty (2014) -
Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).
(
10.1038/nmat2261
) / Nat. Mater. by CJ Pickard (2008) -
Ninet, S. et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).
(
10.1103/PhysRevB.89.174103
) / Phys. Rev. B by S Ninet (2014) -
Nakahata, I., Matsui, N., Akahama, Y. & Kawamura, H. Structural studies of solid methane at high pressures. Chem. Phys. Lett. 302, 359–362 (1999).
(
10.1016/S0009-2614(99)00092-5
) / Chem. Phys. Lett. by I Nakahata (1999) -
Zhu, Q., Oganov, A. R., Glass, C. W. & Stokes, H. T. Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Cryst. B 68, 215–226 (2012).
(
10.1107/S0108768112017466
) / Acta Cryst. B by Q Zhu (2012) -
Maynard-Casely, H. et al. The distorted close-packed crystal structure of methane A. J. Chem. Phys. 133, 064504 (2010).
(
10.1063/1.3455889
) / J. Chem. Phys. by H Maynard-Casely (2010) -
Zhou, Z. F. & Harris, K. D. M. Design of a molecular quasicrystal. ChemPhysChem 7, 1649–1653 (2006).
(
10.1002/cphc.200600278
) / ChemPhysChem by ZF Zhou (2006) -
Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2010).
(
10.1021/ic102031h
) / Inorg. Chem. by G Hautier (2010) -
Davies, D. W. et al. Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022–1030 (2018).
(
10.1039/C7SC03961A
) / Chem. Sci. by DW Davies (2018) - Allahyari, Z. & Oganov, A. R. Coevolutionary search for optimal materials in the space of all possible compounds. Preprint at arXiv https://arxiv.org/abs/1807.00854 (2018).
-
Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).
(
10.1016/j.cpc.2012.12.009
) / Comput. Phys. Commun. by AO Lyakhov (2013) -
Lyakhov, A. O. & Oganov, A. R. Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys. Rev. B 84, 092103 (2011).
(
10.1103/PhysRevB.84.092103
) / Phys. Rev. B by AO Lyakhov (2011) -
Zhang, X. et al. First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013).
(
10.1063/1.4794424
) / J. Chem. Phys. by X Zhang (2013) -
Zhu, Q., Oganov, A. R., Salvado, M. A., Pertierra, P. & Lyakhov, A. O. Denser than diamond: ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410 (2011).
(
10.1103/PhysRevB.83.193410
) / Phys. Rev. B by Q Zhu (2011) -
Xiang, H., Huang, B., Kan, E., Wei, S.-H. & Gong, X. Towards direct-gap silicon phases by the inverse band structure design approach. Phys. Rev. Lett. 110, 118702 (2013).
(
10.1103/PhysRevLett.110.118702
) / Phys. Rev. Lett. by H Xiang (2013) -
Nunez-Valdez, M., Allahyari, Z., Fan, T. & Oganov, A. R. Efficient technique for computational design of thermoelectric materials. Comput. Phys. Comm. 222, 152–157 (2018).
(
10.1016/j.cpc.2017.10.001
) / Comput. Phys. Comm. by M Nunez-Valdez (2018) -
Kvashnin, A. G., Oganov, A. R., Samtsevich, A. I. & Allahyari, Z. Computational search for novel hard chromium-based materials. J. Phys. Chem. Lett. 8, 755–764 (2017).
(
10.1021/acs.jpclett.6b02821
) / J. Phys. Chem. Lett. by AG Kvashnin (2017) -
Zhang, Y.-Y., Gao, W., Chen, S., Xiang, H. & Gong, X.-G. Inverse design of materials by multi-objective differential evolution. Comput. Mater. Sci. 98, 51–55 (2015).
(
10.1016/j.commatsci.2014.10.054
) / Comput. Mater. Sci. by Y-Y Zhang (2015) -
Yu, X.-H., Oganov, A. R., Zhu, Q., Qi, F. & Qian, G.-R. The stability and unexpected chemistry of oxide clusters. Phys. Chem. Chem. Phys. 20, 30437–30444 (2018).
(
10.1039/C8CP03519A
) / Phys. Chem. Chem. Phys. by X-H Yu (2018) -
Lepeshkin, S. et al. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface. Nanoscale 8, 1816–1820 (2016).
(
10.1039/C6NR07504E
) / Nanoscale by S Lepeshkin (2016) -
Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).
(
10.1016/S0891-5849(03)00149-7
) / Free Radic. Biol. Med. by B Fubini (2003) -
Lepeshkin, S. V., Baturin, V. S., Yu. Uspenskii, A. & Oganov, A. R. Method for simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions. J. Phys. Chem. Lett. 10, 102–106 (2019).
(
10.1021/acs.jpclett.8b03510
) / J. Phys. Chem. Lett. by SV Lepeshkin (2019) -
Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).
(
10.1038/ncomms4113
) / Nat. Commun. by ZA Piazza (2014) -
Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).
(
10.1038/nchem.1999
) / Nat. Chem. by H-J Zhai (2014) -
Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).
(
10.1103/PhysRevLett.118.106101
) / Phys. Rev. Lett. by M Ashton (2017) -
Revard, B. C., Tipton, W. W., Yesypenko, A. & Hennig, R. G. Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials. Phys. Rev. B 93, 054117 (2016).
(
10.1103/PhysRevB.93.054117
) / Phys. Rev. B by BC Revard (2016) -
Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).
(
10.1103/PhysRevLett.112.085502
) / Phys. Rev. Lett. by X-F Zhou (2014) -
Mannix, A. J. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).
(
10.1126/science.aad1080
) / Science by AJ Mannix (2015) -
Zhu, Z. et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys. Rev. Lett. 119, 106101 (2017).
(
10.1103/PhysRevLett.119.106101
) / Phys. Rev. Lett. by Z Zhu (2017) -
Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).
(
10.1103/PhysRevLett.116.025501
) / Phys. Rev. Lett. by J Chen (2016) -
Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Double-layer ice from first principles. Phys. Rev. B 95, 094121 (2017).
(
10.1103/PhysRevB.95.094121
) / Phys. Rev. B by J Chen (2017) -
Corsetti, F., Zubeltzu, J. & Artacho, E. Enhanced configurational entropy in high-density nanoconfined bilayer ice. Phys. Rev. Lett. 116, 085901 (2016).
(
10.1103/PhysRevLett.116.085901
) / Phys. Rev. Lett. by F Corsetti (2016) -
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7×7 reconstruction on Si (111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983).
(
10.1103/PhysRevLett.50.120
) / Phys. Rev. Lett. by G Binnig (1983) -
Zhu, Q., Li, L., Oganov, A. R. & Allen, P. B. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys. Rev. B 87, 195317 (2013).
(
10.1103/PhysRevB.87.195317
) / Phys. Rev. B by Q Zhu (2013) - Lu, S., Wang, Y., Liu, H., M.-S., Miao & Ma, Y. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat. Commun. 5, 3666 (2014). / Nat. Commun. by S Lu (2014)
-
Chuang, F., Ciobanu, C. V., Shenoy, V., Wang, C.-Z. & Ho, K.-M. Finding the reconstructions of semiconductor surfaces via a genetic algorithm. Surf. Sci. 573, L375–L381 (2004).
(
10.1016/j.susc.2004.09.041
) / Surf. Sci. by F Chuang (2004) -
Sierka, M. et al. Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment. J. Chem. Phys. 126, 234710 (2007).
(
10.1063/1.2743427
) / J. Chem. Phys. by M Sierka (2007) -
Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. J. Chem. Phys. 141, 044711 (2014).
(
10.1063/1.4886337
) / J. Chem. Phys. by LB Vilhelmsen (2014) -
Wang, Q., Oganov, A. R., Zhu, Q. & Zhou, X.-F. New reconstructions of the (110) surface of rutile TiO2 predicted by an evolutionary method. Phys. Rev. Lett. 113, 266101 (2014).
(
10.1103/PhysRevLett.113.266101
) / Phys. Rev. Lett. by Q Wang (2014) -
Zhou, R., Qu, B., Li, D., Sun, X. & Zeng, X. C. Anatase (101) reconstructed surface with novel functionalities: Desired bandgap for visible light absorption and high chemical reactivity. Adv. Func. Mater. 28, 1705529 (2018).
(
10.1002/adfm.201705529
) / Adv. Func. Mater. by R Zhou (2018) -
Chen, P., Xu, Y., Wang, N., Oganov, A. R. & Duan, W. Effects of ferroelectric polarization on surface phase diagram: evolutionary algorithm study of the BaTiO3 (001) surface. Phys. Rev. B 92, 085432 (2015).
(
10.1103/PhysRevB.92.085432
) / Phys. Rev. B by P Chen (2015) -
Harmer, M. P. The phase behavior of interfaces. Science 332, 182–183 (2011).
(
10.1126/science.1204204
) / Science by MP Harmer (2011) -
Von Alfthan, S., Haynes, P., Kaski, K. & Sutton, A. Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96, 055505 (2006).
(
10.1103/PhysRevLett.96.055505
) / Phys. Rev. Lett. by S Von Alfthan (2006) -
Frolov, T., Divinski, S., Asta, M. & Mishin, Y. Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110, 255502 (2013).
(
10.1103/PhysRevLett.110.255502
) / Phys. Rev. Lett. by T Frolov (2013) -
Frolov, T., Olmsted, D. L., Asta, M. & Mishin, Y. Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2013).
(
10.1038/ncomms2919
) / Nat. Commun. by T Frolov (2013) -
Schusteritsch, G. & Pickard, C. J. Predicting interface structures: from SrTiO3 to graphene. Phys. Rev. B. 90, 035424 (2014).
(
10.1103/PhysRevB.90.035424
) / Phys. Rev. B. by G Schusteritsch (2014) - Zhu, Q., Samanta, A., Li, B., Rudd, R. E. & Frolov, T. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 9, 467 (2018). / Nat. Commun. by Q Zhu (2018)
-
Frolov, T. et al. Grain boundary phases in bcc metals. Nanoscale 10, 8253–8268 (2018).
(
10.1039/C8NR00271A
) / Nanoscale by T Frolov (2018) -
Xiang, H., Da Silva, J. L., Branz, H. M. & Wei, S.-H. Understanding the clean interface between covalent Si and ionic Al2O3. Phys. Rev. Lett. 103, 116101 (2009).
(
10.1103/PhysRevLett.103.116101
) / Phys. Rev. Lett. by H Xiang (2009) -
Chua, A. L.-S., Benedek, N. A., Chen, L., Finnis, M. W. & Sutton, A. P. A genetic algorithm for predicting the structures of interfaces in multicomponent systems. Nat. Mater. 9, 418 (2010).
(
10.1038/nmat2712
) / Nat. Mater. by AL-S Chua (2010) -
Zhao, X. et al. Interface structure prediction from first-principles. J. Phys. Chem. C 118, 9524–9530 (2014).
(
10.1021/jp5010852
) / J. Phys. Chem. C by X Zhao (2014) -
Caviglia, A. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).
(
10.1038/nature07576
) / Nature by A Caviglia (2008) -
Weber, J. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).
(
10.1073/pnas.1003052107
) / Proc. Natl Acad. Sci. USA by J Weber (2010) -
Coomer, B. J., Goss, J. P., Jones, R., Oberg, S. & Briddon, P. R. Identification of the tetra-interstitial in silicon. J. Phys. Condens. Matter 13, L1–L7 (2001).
(
10.1088/0953-8984/13/1/101
) / J. Phys. Condens. Matter by BJ Coomer (2001) - Humble, P. The structure and mechanism of formation of platelets in natural type Ia diamond. Proc. R. Soc. A 381, 65–81 (1982). / Proc. R. Soc. A by P Humble (1982)
-
Morris, A. J., Pickard, C. J. & Needs, R. J. Hydrogen/silicon complexes in silicon from computational searches. Phys. Rev. B 78, 184102 (2008).
(
10.1103/PhysRevB.78.184102
) / Phys. Rev. B by AJ Morris (2008) -
Morris, A. J., Pickard, C. J. & Needs, R. J. Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches. Phys. Rev. B 80, 144112 (2009).
(
10.1103/PhysRevB.80.144112
) / Phys. Rev. B by AJ Morris (2009) -
Mulroue, J., Morris, A. J. & Duffy, D. M. Ab initio study of intrinsic defects in zirconolite. Phys. Rev. B 84, 094118 (2011).
(
10.1103/PhysRevB.84.094118
) / Phys. Rev. B by J Mulroue (2011) -
Morris, A. J., Grey, C. P., Needs, R. J. & Pickard, C. J. Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction. Phys. Rev. B 84, 224106 (2011).
(
10.1103/PhysRevB.84.224106
) / Phys. Rev. B by AJ Morris (2011) -
Kaczmarowski, A., Yang, S., Szlufarska, I. & Morgan, D. Genetic algorithm optimization of defect clusters in crystalline materials. Comput. Mater. Sci. 98, 234–244 (2015).
(
10.1016/j.commatsci.2014.10.062
) / Comput. Mater. Sci. by A Kaczmarowski (2015) -
Aust, R. & Drickamer, H. Carbon: a new crystalline phase. Science 140, 817–819 (1963).
(
10.1126/science.140.3568.817
) / Science by R Aust (1963) -
Utsumi, W. & Yagi, T. Light-transparent phase formed by room-temperature compression of graphite. Science 252, 1542–1544 (1991).
(
10.1126/science.252.5012.1542
) / Science by W Utsumi (1991) -
Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).
(
10.1126/science.1089713
) / Science by WL Mao (2003) -
Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).
(
10.1103/PhysRevLett.102.175506
) / Phys. Rev. Lett. by Q Li (2009) -
Umemoto, K., Wentzcovitch, R. M., Saito, S. & Miyake, T. Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys. Rev. Lett. 104, 125504 (2010).
(
10.1103/PhysRevLett.104.125504
) / Phys. Rev. Lett. by K Umemoto (2010) -
Wang, J.-T., Chen, C. & Kawazoe, Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 106, 075501 (2011).
(
10.1103/PhysRevLett.106.075501
) / Phys. Rev. Lett. by J-T Wang (2011) -
Niu, H. et al. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. 108, 135501 (2012).
(
10.1103/PhysRevLett.108.135501
) / Phys. Rev. Lett. by H Niu (2012) -
Boulfelfel, S. E., Oganov, A. R. & Leoni, S. Understanding the nature of superhard graphite. Sci. Rep. 2, 471 (2012).
(
10.1038/srep00471
) / Sci. Rep. by SE Boulfelfel (2012) - Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. K. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012). / Sci. Rep. by Y Wang (2012)
- Oganov, A. R. & Solozhenko, V.L. Boron: a hunt for superhard polymorphs. J. Superhard Mater. 31, 285 (2009). / J. Superhard Mater. by AR Oganov (2009)
-
Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).
(
10.1038/nature07736
) / Nature by AR Oganov (2009) -
Solozhenko, V.L., Kurakevych, O. & Oganov, A. R. On the hardness of a new boron phase, orthorhombic γ-B28. J. Superhard Mater. 30, 428 (2008).
(
10.3103/S1063457608060117
) / J. Superhard Mater. by V Solozhenko (2008) -
Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V., Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).
(
10.1103/PhysRevB.99.064114
) -
Niu, H. et al. Structure, bonding, and possible superhardness of CrB4. Phys. Rev. B 85, 144116 (2012).
(
10.1103/PhysRevB.85.144116
) / Phys. Rev. B by H Niu (2012) - Kvashnin, A. G. et al. New tungsten borides, their stability and outstanding mechanical properties. J. Phys. Chem. Lett. 9, 3470–3477 (2018). / Chem. Lett. by AG Kvashnin (2018)
-
Kolmogorov, A. et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).
(
10.1103/PhysRevLett.105.217003
) / Phys. Rev. Lett. by A Kolmogorov (2010) -
Gou, H. et al. Discovery of a superhard iron tetraboride superconductor. Phys. Rev. Lett. 111, 157002 (2013).
(
10.1103/PhysRevLett.111.157002
) / Phys. Rev. Lett. by H Gou (2013) -
Zhang, M. et al. Hardness of FeB4: density functional theory investigation. J. Chem. Phys. 140, 174505 (2014).
(
10.1063/1.4871627
) / J. Chem. Phys. by M Zhang (2014) -
Wang, Q. et al. Is orthorhombic iron tetraboride superhard? J. Materiomics 1, 45–51 (2015).
(
10.1016/j.jmat.2015.03.004
) / J. Materiomics by Q Wang (2015) -
Van Der Geest, A. & Kolmogorov, A. Stability of 41 metal–boron systems at 0 GPa and 30 GPa from first principles. Calphad 46, 184–204 (2014).
(
10.1016/j.calphad.2014.03.005
) / Calphad by A Van Der Geest (2014) -
Niu, H. et al. Variable-composition structural optimization and experimental verification of MnB3 and MnB4. Phys. Chem. Chem. Phys. 16, 15866–15873 (2014).
(
10.1039/C4CP01339E
) / Phys. Chem. Chem. Phys. by H Niu (2014) -
Hu, X. et al. Atomic-scale observation and analysis of chemical ordering in M3B2 and M5B3 borides. Acta Mater. 149, 274–284 (2018).
(
10.1016/j.actamat.2018.02.055
) / Acta Mater. by X Hu (2018) -
Yu, S., Zeng, Q., Oganov, A. R., Frapper, G. & Zhang, L. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Phys. Chem. Chem. Phys. 17, 11763–11769 (2015).
(
10.1039/C5CP00156K
) / Phys. Chem. Chem. Phys. by S Yu (2015) -
Bhadram, V. S., Kim, D. Y. & Strobel, T. A. High-pressure synthesis and characterization of incompressible titanium per-nitride. Chem. Mater. 28, 1616–1620 (2016).
(
10.1021/acs.chemmater.6b00042
) / Chem. Mater. by VS Bhadram (2016) -
Schilling, A., Cantoni, M., Guo, J. & Ott, H. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).
(
10.1038/363056a0
) / Nature by A Schilling (1993) -
Monteverde, M. et al. High-pressure effects in fluorinated HgBa2Ca2Cu3O8+δ. Europhys. Lett. 72, 458–464 (2005).
(
10.1209/epl/i2005-10247-3
) / Europhys. Lett. by M Monteverde (2005) -
Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968).
(
10.1103/PhysRevLett.21.1748
) / Phys. Rev. Lett. by NW Ashcroft (1968) -
Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
(
10.1103/PhysRevLett.92.187002
) / Phys. Rev. Lett. by NW Ashcroft (2004) - Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014). / Sci. Rep. by D Duan (2014)
-
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
(
10.1038/nature14964
) / Nature by AP Drozdov (2015) -
Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).
(
10.1038/nature17175
) / Nature by I Errea (2016) -
Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).
(
10.1103/PhysRevLett.114.157004
) / Phys. Rev. Lett. by I Errea (2015) -
Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).
(
10.1038/nphys3760
) / Nat. Phys. by M Einaga (2016) -
Goncharov, A. F. et al. Hydrogen sulfide at high pressure: change in stoichiometry. Phys. Rev. B 93, 174105 (2016).
(
10.1103/PhysRevB.93.174105
) / Phys. Rev. B by AF Goncharov (2016) -
Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103 (2016).
(
10.1103/PhysRevB.93.020103
) / Phys. Rev. B by Y Li (2016) -
Kruglov, I., Akashi, R., Yoshikawa, S., Oganov, A. R. & Esfahani Davari, M. M. Refined phase diagram of the H-S system with high-Tc superconductivity. Phys. Rev. B 96, 220101 (2017).
(
10.1103/PhysRevB.96.220101
) / Phys. Rev. B by I Kruglov (2017) -
Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).
(
10.1073/pnas.1118168109
) / Proc. Natl Acad. Sci. USA by H Wang (2012) - Li, Y. et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015). / Sci. Rep. by Y Li (2015)
-
Kvashnin, A. G., Semenok, D. V., Kruglov, I. A., Wrona, I. A. & Oganov, A. R. High-temperature superconductivity in a Th–H system under pressure conditions. ACS Appl. Mater. Interfaces 10, 43809–43816 (2018).
(
10.1021/acsami.8b17100
) / ACS Appl. Mater. Interfaces by AG Kvashnin (2018) -
Semenok, D., Kvashnin, A. G., Kruglov, I. A. & Oganov, A. R. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett. 9, 1920–1926 (2018).
(
10.1021/acs.jpclett.8b00615
) / J. Phys. Chem. Lett. by D Semenok (2018) -
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
(
10.1103/PhysRevLett.119.107001
) / Phys. Rev. Lett. by F Peng (2017) -
Geballe, Z. M. et al. Synthesis and stability of lanthanum superhydrides. Angew. Chem. Int. Ed. 57, 688–692 (2017).
(
10.1002/anie.201709970
) / Angew. Chem. Int. Ed. by ZM Geballe (2017) -
Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).
(
10.1038/nchem.1476
) / Nat. Chem. by M Kitano (2012) -
Ellaboudy, A., Dye, J. L. & Smith, P. B. Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride. J. Am. Chem. Soc. 105, 6490–6491 (1983).
(
10.1021/ja00359a022
) / J. Am. Chem. Soc. by A Ellaboudy (1983) -
Dye, J. L. Electrides: Ionic salts with electrons as the anions. Science 247, 663–668 (1990).
(
10.1126/science.247.4943.663
) / Science by JL Dye (1990) -
Matsuishi, S. et al. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science 301, 626–629 (2003).
(
10.1126/science.1083842
) / Science by S Matsuishi (2003) -
Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).
(
10.1038/nature07786
) / Nature by Y Ma (2009) -
Pickard, C. J. & Needs, R. J. Predicted pressure-induced s-band ferromagnetism in alkali metals. Phys. Rev. Lett. 107, 087201 (2011).
(
10.1103/PhysRevLett.107.087201
) / Phys. Rev. Lett. by CJ Pickard (2011) -
Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).
(
10.1038/nmat2796
) / Nat. Mater. by CJ Pickard (2010) -
Miao, M.-S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).
(
10.1021/ar4002922
) / Acc. Chem. Res. by M-S Miao (2014) - Inoshita, T., Jeong, S., Hamada, N. & Hosono, H. Exploration for two-dimensional electrides via database screening and ab initio calculation. Phys. Rev. X 4, 031023 (2014). / Phys. Rev. X by T Inoshita (2014)
-
Ming, W., Yoon, M., Du, M.-H., Lee, K. & Kim, S. W. First-principles prediction of thermodynamically stable two-dimensional electrides. J. Am. Chem. Soc. 138, 15336–15344 (2016).
(
10.1021/jacs.6b05586
) / J. Am. Chem. Soc. by W Ming (2016) - Zhang, Y., Wang, H., Wang, Y., Zhang, L. & Ma, Y. Computer-assisted inverse design of inorganic electrides. Phys. Rev. X 7, 011017 (2017). / Phys. Rev. X by Y Zhang (2017)
-
Wang, J. et al. Exploration of stable strontium phosphide-based electrides: theoretical structure prediction and experimental validation. J. Am. Chem. Soc. 139, 15668–15680 (2017).
(
10.1021/jacs.7b06279
) / J. Am. Chem. Soc. by J Wang (2017) -
Price, S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014).
(
10.1039/C3CS60279F
) / Chem. Soc. Rev. by SL Price (2014) -
Day, G. M. Current approaches to predicting molecular organic crystal structures. Crystallogr. Rev. 17, 3–52 (2011).
(
10.1080/0889311X.2010.517526
) / Crystallogr. Rev. by GM Day (2011) -
Reilly, A. M. et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Cryst. B 72, 439–459 (2016).
(
10.1107/S2052520616007447
) / Acta Cryst. B by AM Reilly (2016) -
Oganov, A. R. Crystal structure prediction: reflections on present status and challenges. Faraday Discuss. 211, 643–660 (2018).
(
10.1039/C8FD90033G
) / Faraday Discuss. by AR Oganov (2018) -
Bull, C. L. et al. ζ-glycine: insight into the mechanism of a polymorphic phase transition. IUCrJ 4, 569–574 (2017).
(
10.1107/S205225251701096X
) / IUCrJ by CL Bull (2017) - Neumann, M., Van De Streek, J., Fabbiani, F., Hidber, P. & Grassmann, O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 6, 7793 (2015). / Nat. Commun. by M Neumann (2015)
-
Zhu, Q. et al. Resorcinol crystallization from the melt: a new ambient phase and new riddles. J. Am. Chem. Soc. 138, 4881–4889 (2016).
(
10.1021/jacs.6b01120
) / J. Am. Chem. Soc. by Q Zhu (2016) -
Xu, W., Zhu, Q. & Hu, C. T. The structure of glycine dihydrate: implications for the crystallization of glycine from solution and its structure in outer space. Angew. Chem. 129, 2030–2034 (2017).
(
10.1002/ange.201610977
) / Angew. Chem. by W Xu (2017) -
Shtukenberg, A. G. et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem. Sci. 8, 4926–4940 (2017).
(
10.1039/C7SC00168A
) / Chem. Sci. by AG Shtukenberg (2017) -
Shtukenberg, A. G. et al. The third ambient aspirin polymorph. Cryst. Growth Des. 17, 3562–3566 (2017).
(
10.1021/acs.cgd.7b00673
) / Cryst. Growth Des. by AG Shtukenberg (2017) -
Yang, J. et al. DDT polymorphism and the lethality of crystal forms. Angew. Chem. Int. Ed. 56, 10165–10169 (2017).
(
10.1002/anie.201703028
) / Angew. Chem. Int. Ed. by J Yang (2017) -
Sokolov, A. N. et al. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat. Commun. 2, 437 (2011).
(
10.1038/ncomms1451
) / Nat. Commun. by AN Sokolov (2011) -
Campbell, J. E., Yang, J. & Day, G. M. Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 5, 7574–7584 (2017).
(
10.1039/C7TC02553J
) / J. Mater. Chem. C by JE Campbell (2017) -
Yang, J. et al. Large–scale computational screening of molecular organic semiconductors using crystal structure prediction. Chem. Mater. 30, 4361–4371 (2018).
(
10.1021/acs.chemmater.8b01621
) / Chem. Mater. by J Yang (2018) -
Musil, F. et al. Machine learning for the structure–energy–property landscapes of molecular crystals. Chem. Sci. 9, 1289–1300 (2018).
(
10.1039/C7SC04665K
) / Chem. Sci. by F Musil (2018) -
Berardo, E., Turcani, L., Miklitz, M. & Jelfs, K. E. An evolutionary algorithm for the discovery of porous organic cages. Chem. Sci. 9, 8513–8527 (2018).
(
10.1039/C8SC03560A
) / Chem. Sci. by E Berardo (2018) -
Wang, Q. et al. Direct band gap silicon allotropes. Chem. Soc. 136, 9826–9829 (2014).
(
10.1021/ja5035792
) / Chem. Soc. by Q Wang (2014) -
Mujica, A., Pickard, C. J. & Needs, R. J. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B 91, 214104 (2015).
(
10.1103/PhysRevB.91.214104
) / Phys. Rev. B by A Mujica (2015) -
Amsler, M., Botti, S., Marques, M. A., Lenosky, T. J. & Goedecker, S. Low-density silicon allotropes for photovoltaic applications. Phys. Rev. B 92, 014101 (2015).
(
10.1103/PhysRevB.92.014101
) / Phys. Rev. B by M Amsler (2015) -
Kim, D. Y., Stefanoski, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015).
(
10.1038/nmat4140
) / Nat. Mater. by DY Kim (2015) -
Zhu, Q., Oganov, A. R., Lyakhov, A. O. & Yu, X. Generalized evolutionary metadynamics for sampling the energy landscapes and its applications. Phys. Rev. B 92, 024106 (2015).
(
10.1103/PhysRevB.92.024106
) / Phys. Rev. B by Q Zhu (2015) -
Rapp, L. et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015).
(
10.1038/ncomms8555
) / Nat. Commun. by L Rapp (2015) -
Su, C. et al. Construction of crystal structure prototype database: methods and applications. J. Phys. Condens. Matter 29, 165901 (2017).
(
10.1088/1361-648X/aa63cd
) / J. Phys. Condens. Matter by C Su (2017) -
Bushlanov, P. V., Blatov, V. A. & Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 236, 1–7 (2019).
(
10.1016/j.cpc.2018.09.016
) / Comput. Phys. Commun. by PV Bushlanov (2019) -
Ahnert, S. E., Grant, W. P. & Pickard, C. J. Revealing and exploiting hierarchical material structure through complex atomic networks. NPJ Comput. Mater. 3, 35 (2017).
(
10.1038/s41524-017-0035-x
) / NPJ Comput. Mater. by SE Ahnert (2017) -
Moran, R. F. et al. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite. Phys. Chem. Chem. Phys. 18, 10173–10181 (2016).
(
10.1039/C6CP01529H
) / Phys. Chem. Chem. Phys. by RF Moran (2016) -
Monserrat, B., Drummond, N. D. & Needs, R. J. Anharmonic vibrational properties in periodic systems: energy, electron- phonon coupling, and stress. Phys. Rev. B 87, 144302 (2013).
(
10.1103/PhysRevB.87.144302
) / Phys. Rev. B by B Monserrat (2013) -
Souvatzis, P., Eriksson, O., Katsnelson, M. & Rudin, S. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).
(
10.1103/PhysRevLett.100.095901
) / Phys. Rev. Lett. by P Souvatzis (2008) -
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 2017).
(
10.1093/oso/9780198803195.001.0001
) -
Fontaine, D. D. Configurational thermodynamics of solid solutions. Solid State Phys. 34, 73–274 (1979).
(
10.1016/S0081-1947(08)60360-4
) / Solid State Phys. by DD Fontaine (1979) -
Zarkevich, N. A. & Johnson, D. D. Reliable first-principles alloy thermodynamics via truncated cluster expansions. Phys. Rev. Lett. 92, 255702 (2004).
(
10.1103/PhysRevLett.92.255702
) / Phys. Rev. Lett. by NA Zarkevich (2004) - National Centre of Competence in Research MARVEL. Download the Quantum Mobile Virtual Machine based on Ubuntu Linux with a collection of quantum simulation codes. MARVEL http://nccr-marvel.ch/en/news/communication/2017-12-download-the-quantum-mobile-virtual-machine-based-on-ubuntu-linux-with-a-collection-of-quantum-simulation-codes (2017).
-
Khrapov, N., Roizen, V., Posypkin, M., Samtsevich, A. & Oganov, A. R. Volunteer computing for computational materials design. Lobachevskii J. Math. 38, 926–930 (2017).
(
10.1134/S1995080217050195
) / Lobachevskii J. Math. by N Khrapov (2017) - Cao, Y. et al. Quantum chemistry in the age of quantum computing. Preprint at arXiv https://arxiv.org/abs/1812.09976 (2018).
-
Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).
(
10.1103/PhysRevLett.97.170201
) / Phys. Rev. Lett. by E Bitzek (2006) - Michalewicz, Z. & Fogel, D. B. How to Solve It: Modern Heuristics (Springer, 2013).
-
Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J. & Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 346, 343–345 (1990).
(
10.1038/346343a0
) / Nature by J Pannetier (1990) -
Schon, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. 35, 1286–1304 (1996).
(
10.1002/anie.199612861
) / Angew. Chem. Int. Ed. by JC Schon (1996) -
Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).
(
10.1021/jp970984n
) / J. Phys. Chem. A by DJ Wales (1997) -
Judson, R. S., Jaeger, E. P., Treasurywala, A. M. & Peterson, M. L. Conformational searching methods for small molecules. II. Genetic algorithm approach. J. Comput. Chem. 14, 1407–1414 (1993).
(
10.1002/jcc.540141117
) / Genetic algorithm approach. J. Comput. Chem. by RS Judson (1993) -
Bush, T., Catlow, C. R. A. & Battle, P. Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem. 5, 1269–1272 (1995).
(
10.1039/jm9950501269
) / J. Mater. Chem. by T Bush (1995) -
Curtis, F. et al. GAtor: a first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 14, 2246–2264 (2018).
(
10.1021/acs.jctc.7b01152
) / J. Chem. Theory Comput. by F Curtis (2018) -
Zhu, Q., Oganov, A. R. & Lyakhov, A. O. Evolutionary metadynamics: a novel method to predict crystal structures. CrystEngComm 14, 3596–3601 (2012).
(
10.1039/c2ce06642d
) / CrystEngComm by Q Zhu (2012) -
Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).
(
10.1126/science.aad3000
) / Science by K Lejaeghere (2016) -
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
(
10.1103/PhysRevLett.98.146401
) / Phys. Rev. Lett. by J Behler (2007) -
Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).
(
10.1039/c1cp21668f
) / Phys. Chem. Chem. Phys. by J Behler (2011) -
Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
(
10.1103/PhysRevLett.104.136403
) / Phys. Rev. Lett. by AP Bartok (2010) -
Behler, J., Martonak, R., Donadio, D. & Parrinello, M. Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys. Rev. Lett. 100, 185501 (2008).
(
10.1103/PhysRevLett.100.185501
) / Phys. Rev. Lett. by J Behler (2008) -
Deringer, V. L., J. Pickard, C. & Csanyi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).
(
10.1103/PhysRevLett.120.156001
) / Phys. Rev. Lett. by VL Deringer (2018) -
Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).
(
10.1038/ncomms15679
) / Nat. Commun. by O Isayev (2017) -
Zhao, X. et al. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112, 045502 (2014).
(
10.1103/PhysRevLett.112.045502
) / Phys. Rev. Lett. by X Zhao (2014) -
Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).
(
10.1038/ncomms5845
) / Nat. Commun. by V Sharma (2014) -
Nicholls, R. J. et al. Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces. Adv. Eng. Mater. 17, 211–215 (2015).
(
10.1002/adem.201400133
) / Adv. Eng. Mater. by RJ Nicholls (2015) -
Pickard, C. J., Salamat, A., Bojdys, M. J., Needs, R. J. & McMillan, P. F. Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 94, 094104 (2016).
(
10.1103/PhysRevB.94.094104
) / Phys. Rev. B by CJ Pickard (2016) -
Kruglov, I. A. et al. Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity. Sci. Adv. 4, eaat9776 (2018).
(
10.1126/sciadv.aat9776
) / Sci. Adv. by IA Kruglov (2018) -
Wang, Q., Oganov, A. R., Feya, O. D., Zhu, Q. & Ma, D. The unexpectedly rich reconstructions of rutile TiO2(011)-(2×1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys. Chem. Chem. Phys. 18, 19549–19556 (2016).
(
10.1039/C6CP01203E
) / Phys. Chem. Chem. Phys. by Q Wang (2016) -
Schusteritsch, G., Hepplestone, S. P. & Pickard, C. J. First-principles structure determination of interface materials: the NixInAs nickelides. Phys. Rev. B 92, 054105 (2015).
(
10.1103/PhysRevB.92.054105
) / Phys. Rev. B by G Schusteritsch (2015)
Dates
Type | When |
---|---|
Created | 6 years, 4 months ago (April 4, 2019, 7:04 a.m.) |
Deposited | 1 year, 1 month ago (July 16, 2024, 12:19 p.m.) |
Indexed | 1 day, 2 hours ago (Aug. 23, 2025, 9:44 p.m.) |
Issued | 6 years, 4 months ago (April 4, 2019) |
Published | 6 years, 4 months ago (April 4, 2019) |
Published Online | 6 years, 4 months ago (April 4, 2019) |
@article{Oganov_2019, title={Structure prediction drives materials discovery}, volume={4}, ISSN={2058-8437}, url={http://dx.doi.org/10.1038/s41578-019-0101-8}, DOI={10.1038/s41578-019-0101-8}, number={5}, journal={Nature Reviews Materials}, publisher={Springer Science and Business Media LLC}, author={Oganov, Artem R. and Pickard, Chris J. and Zhu, Qiang and Needs, Richard J.}, year={2019}, month=apr, pages={331–348} }