Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Chemistry (297)
References
161
Referenced
106
-
Dobson, J. F. Beyond pairwise additivity in London dispersion interactions. Int. J. Quantum Chem. 114, 1157–1161 (2014).
(
10.1002/qua.24635
) / Int. J. Quantum Chem. by JF Dobson (2014) -
Tsoi, S. et al. Van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano 8, 12410–12417 (2014).
(
10.1021/nn5050905
) / ACS Nano by S Tsoi (2014) -
Schmidbaur, H. & Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 37, 1931–1951 (2008).
(
10.1039/b708845k
) / Chem. Soc. Rev. by H Schmidbaur (2008) -
Pyykko, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).
(
10.1002/anie.200300624
) / Angew. Chem. Int. Ed. by P Pyykko (2004) -
Liptrot, D. J. & Power, P. P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat. Rev. Chem. 1, 0004 (2017).
(
10.1038/s41570-016-0004
) / Nat. Rev. Chem. by DJ Liptrot (2017) -
Guo, J. D., Liptrot, D. J., Nagase, S. & Power, P. P. The multiple bonding in heavier group 14 element alkene analogues is stabilized mainly by dispersion force effects. Chem. Sci. 6, 6235–6244 (2015).
(
10.1039/C5SC02707A
) / Chem. Sci. by JD Guo (2015) -
Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).
(
10.1038/nature10367
) / Nature by PR Schreiner (2011) -
Fokin, A. A. et al. Stable alkanes containing very long carbon–carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).
(
10.1021/ja302258q
) / J. Am. Chem. Soc. by AA Fokin (2012) -
Grimme, S. & Schreiner, P. R. Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. Angew. Chem. Int. Ed. 50, 12639–12642 (2011).
(
10.1002/anie.201103615
) / Angew. Chem. Int. Ed. by S Grimme (2011) -
Lyngvi, E., Sanhueza, I. A. & Schoenebeck, F. Dispersion makes the difference: bisligated transition states found for the oxidative addition of Pd(Pt Bu3)2 to Ar–OSO2R and dispersion-controlled chemoselectivity in reactions with Pd[P(iPr)(tBu2)]2 . Organometallics 34, 805–812 (2015).
(
10.1021/om501199t
) / Organometallics by E Lyngvi (2015) -
Wagner, J. P. & Schreiner, P. R. London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds. J. Chem. Theory Comput. 12, 231–237 (2016).
(
10.1021/acs.jctc.5b01100
) / J. Chem. Theory Comput. by JP Wagner (2016) -
Hänninen, M. M., Pal, K., Day, B. M., Pugh, T. & Layfield, R. A. A three-coordinate iron–silylene complex stabilized by ligand–ligand dispersion forces. Dalton Trans. 45, 11301–11305 (2016).
(
10.1039/C6DT02486F
) / Dalton Trans. by MM Hänninen (2016) -
Reimers, J. R., Watts, R. O. & Klein, M. L. Intermolecular potential functions and the properties of water. Chem. Phys. 64, 95–114 (1982).
(
10.1016/0301-0104(82)85006-4
) / Chem. Phys. by JR Reimers (1982) -
Kumar, M., Chaudhari, R. V., Subramaniam, B. & Jackson, T. A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: density functional calculations illuminate the role of long-range noncovalent interactions. Organometallics 33, 4183–4191 (2014).
(
10.1021/om500196g
) / Organometallics by M Kumar (2014) -
Wolters, L. P., Koekkoek, R. & Bickelhaupt, F. M. Role of steric attraction and bite-angle flexibility in metal-mediated C–H bond activation. ACS Catal. 5, 5766–5775 (2015).
(
10.1021/acscatal.5b01354
) / ACS Catal. by LP Wolters (2015) -
Schweighauser, L., Strauss, M. A., Bellotto, S. & Wegner, H. A. Attraction or repulsion? London dispersion forces control azobenzene switches. Angew. Chem. Int. Ed. 54, 13436–13439 (2015).
(
10.1002/anie.201506126
) / Angew. Chem. Int. Ed. by L Schweighauser (2015) -
Wagner, C. L. et al. Dispersion-force-assisted disproportionation: a stable two-coordinate copper(II) complex. Angew. Chem. Int. Ed. 55, 10444–10447 (2016).
(
10.1002/anie.201605061
) / Angew. Chem. Int. Ed. by CL Wagner (2016) -
Lomas, J. R., Baddeley, C. J., Tikhov, M. S. & Lambert, R. M. Ethyne cyclization to benzene over Cu(110). Langmuir 11, 3048–3053 (1995).
(
10.1021/la00008a033
) / Langmuir by JR Lomas (1995) -
Bilic, A., Reimers, J. R., Hush, N. S., Hoft, R. C. & Ford, M. J. Adsorption of benzene on copper, silver, and gold surfaces. J. Chem. Theory Comput. 2, 1093–1105 (2006).
(
10.1021/ct050237r
) / J. Chem. Theory Comput. by A Bilic (2006) - Reimers, J. R., Li, M., Wan, D., Gould, T. & Ford, M. J. in Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications (eds Otero de la Roza, A. & DiLabio, G. ) in press (Elsevier, 2017). / Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications by JR Reimers (2017)
-
Das, P. K., Samanta, S., McQuarters, A. B., Lehnert, N. & Dey, A. Valence tautomerism in synthetic models of cytochrome P450. Proc. Natl Acad. Sci. USA 113, 6611–6616 (2016).
(
10.1073/pnas.1600525113
) / Proc. Natl Acad. Sci. USA by PK Das (2016) -
Hersleth, H.-P., Ryde, U., Rydberg, P., Gö rbitz, C. H. & Andersson, K. K. Structures of the high-valent metalion haem–oxygen intermediates in peroxidases, oxygenases and catalases. J. Inorg. Biochem. 100, 460–476 (2006).
(
10.1016/j.jinorgbio.2006.01.018
) / J. Inorg. Biochem. by H-P Hersleth (2006) -
Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model. Phys. Chem. Chem. Phys. 17, 24618–24640 (2015).
(
10.1039/C5CP02237A
) / Phys. Chem. Chem. Phys. by JR Reimers (2015) -
Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity. Phys. Chem. Chem. Phys. 17, 24598–25617 (2015).
(
10.1039/C5CP02236C
) / Phys. Chem. Chem. Phys. by JR Reimers (2015) -
McKemmish, L. K., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys. 135, 244110 (2011).
(
10.1063/1.3671386
) / J. Chem. Phys. by LK McKemmish (2011) -
McKemmish, L., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Electron–vibration entanglement in the Born–Oppenheimer description of chemical reactions and spectroscopy. Phys. Chem. Chem. Phys. 17, 24666–24682 (2015).
(
10.1039/C5CP02239H
) / Phys. Chem. Chem. Phys. by L McKemmish (2015) - Reimers, J. R., McKemmish, L., McKenzie, R. H. & Hush, N. S. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections. Phys. Chem. Chem. Phys. 17, 24640–24665 (2015). / Phys. Chem. Chem. Phys. by JR Reimers (2015)
-
Reimers, J. R., Ford, M. J., Halder, A., Ulstrup, J. & Hush, N. S. Gold surfaces and nanoparticles are protected by Au(O)-thiyl species and are destroyed when Au(I)-thiolates form. Proc. Natl Acad. Sci. USA 113, E1424–E1433 (2016).
(
10.1073/pnas.1600472113
) / Proc. Natl Acad. Sci. USA by JR Reimers (2016) -
Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801–802 (1994).
(
10.1039/C39940000801
) -
Heister, K., Zharnikov, M., Grunze, M. & Johansson, L. S. O. Adsorption of alkanethiols and biphenylthiols on Au and Ag substrates: a high-resolution X-ray photoelectron spectroscopy study. J. Phys. Chem. B 105, 4058–4061 (2001).
(
10.1021/jp010127q
) / J. Phys. Chem. B by K Heister (2001) -
Heister, K., Zharnikov, M., Grunze, M., Johansson, L. S. O. & Ulman, A. Characterization of X-ray induced damage in alkanethiolate monolayers by high-resolution photoelectron spectroscopy. Langmuir 17, 8–11 (2001).
(
10.1021/la001101d
) / Langmuir by K Heister (2001) -
Tanaka, A., Takeda, Y., Imamura, M. & Sato, S. Dynamic final-state effect on the Au 4f core-level photoemission of dodecanethiolate-passivated Au nanoparticles on graphite substrates. Phys. Rev. B 68, 195415 (2003).
(
10.1103/PhysRevB.68.195415
) / Phys. Rev. B by A Tanaka (2003) -
Corbierre, M. K. & Lennox, R. B. Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(I)-thiolates. Chem. Mater. 17, 5691–5696 (2005).
(
10.1021/cm051115a
) / Chem. Mater. by MK Corbierre (2005) -
Shaporenko, A., Zharnikov, M., Feulner, P. & Menzel, D. Quantitative analysis of temperature effects in radiation damage of thiolate-based self-assembled monolayers. J. Phys. Condens. Matter 18, S1677–S1689 (2006).
(
10.1088/0953-8984/18/30/S15
) / J. Phys. Condens. Matter by A Shaporenko (2006) -
Park, E. D. & Lee, J. S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal. 186, 1–11 (1999).
(
10.1006/jcat.1999.2531
) / J. Catal. by ED Park (1999) -
Venezia, A. M. et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 109, 2821–2827 (2005).
(
10.1021/jp045928i
) / J. Phys. Chem. B by AM Venezia (2005) -
Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A. & Venezia, A. M. XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 38, 215–218 (2006).
(
10.1002/sia.2180
) / Surf. Interface Anal. by MP Casaletto (2006) -
Mikhlin, Y. L., Nasluzov, V. A., Romanchenko, A. S., Shor, A. M. & Pal'yanova, G. A. XPS and DFT studies of the electronic structures of AgAuS and Ag3AuS2 . J. Alloys Compd. 617, 314–321 (2014).
(
10.1016/j.jallcom.2014.08.014
) / J. Alloys Compd. by YL Mikhlin (2014) -
Liao, L. et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-electron shell closure. J. Am. Chem. Soc. 138, 10425–10428 (2016).
(
10.1021/jacs.6b07178
) / J. Am. Chem. Soc. by L Liao (2016) -
McNeillie, A., Brown, D. H., Smith, W. E., Gibson, M. & Watson, L. X-Ray photoelectron spectra of some gold compounds. J. Chem. Soc., Dalton Trans. 767–770 (1980).
(
10.1039/dt9800000767
) -
Behera, M. & Ram, S. Inquiring the mechanism of formation, encapsulation, and stabilization of gold nanoparticles by poly(vinyl pyrrolidone) molecules in 1-butanol. Appl. Nanosci. 4, 247–254 (2014).
(
10.1007/s13204-013-0198-9
) / Appl. Nanosci. by M Behera (2014) -
Senthilnathan, J., Rao, K. S., Lin, W.-H., Ting, J.-M. & Yoshimura, M. Formation of reusable Au-acetonitrile polymers and N-doped graphene catalyst under UV light via submerged liquid plasma process. J. Mater. Chem. A 3, 3035–3043 (2015).
(
10.1039/C4TA05586A
) / J. Mater. Chem. A by J Senthilnathan (2015) -
Zhang, P. & Sham, T. K. X-Ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003).
(
10.1103/PhysRevLett.90.245502
) / Phys. Rev. Lett. by P Zhang (2003) -
de la Llave, E., Clarenc, R., Schiffrin, D. J. & Williams, F. J. Organization of alkane amines on a gold surface: structure, surface dipole, and electron transfer. J. Phys. Chem. C 118, 468–475 (2014).
(
10.1021/jp410086b
) / J. Phys. Chem. C by E de la Llave (2014) -
Chaudhuri, A. et al. The structure of the Au(111)/methylthiolate interface. New insights from near-edge X-ray absorption spectroscopy and X-ray standing waves. J. Chem. Phys. 130, 124708 (2009).
(
10.1063/1.3102095
) / J. Chem. Phys. by A Chaudhuri (2009) -
Mikhlin, Y. et al. XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions. J. Electron Spectrosc. Relat. Phenom. 177, 24–29 (2010).
(
10.1016/j.elspec.2009.12.007
) / J. Electron Spectrosc. Relat. Phenom. by Y Mikhlin (2010) -
Corthey, G. et al. Synthesis and characterization of gold@gold(I)–thiomalate core@shell nanoparticles. ACS Nano 4, 3413–3421 (2010).
(
10.1021/nn100272q
) / ACS Nano by G Corthey (2010) -
Simms, G. A., Padmos, J. D. & Zhang, P. Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: a XAS, L-DOS, and XPS study.J. Chem. Phys. 131, 214703 (2009).
(
10.1063/1.3268782
) / J. Chem. Phys. by GA Simms (2009) -
Pearson, R. G. Hard and soft acids and bases HSAB. 1. Fundamental principles. J. Chem. Educ. 45, 581–587 (1968).
(
10.1021/ed045p581
) / J. Chem. Educ. by RG Pearson (1968) -
Pearson, R. G. Hard and soft acids and bases — the evolution of a chemical concept. Coord. Chem. Rev. 100, 403–425 (1990).
(
10.1016/0010-8545(90)85016-L
) / Coord. Chem. Rev. by RG Pearson (1990) -
Ayers, P. W., Parr, R. G. & Pearson, R. G. Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J. Chem. Phys. 124, 194107 (2006).
(
10.1063/1.2196882
) / J. Chem. Phys. by PW Ayers (2006) - Selinger, B. Chemistry in the Marketplace (Allen & Unwin, 1999). / Chemistry in the Marketplace by B Selinger (1999)
-
Barton, E. J. et al. ExoMol molecular line lists V: the ro-vibrational spectra of NaCl and KCl. Mon. Not. R. Astron. Soc. 442, 1821–1829 (2014).
(
10.1093/mnras/stu944
) / Mon. Not. R. Astron. Soc. by EJ Barton (2014) -
Reckien, W., Eggers, M. & Bredow, T. Theoretical study of the adsorption of benzene on coinage metals. Beilstein J. Org. Chem. 10, 1775–1784 (2014).
(
10.3762/bjoc.10.185
) / Beilstein J. Org. Chem. by W Reckien (2014) -
Liu, W. et al. Quantitative prediction of molecular adsorption: structure and binding of benzene on coinage metals. Phys. Rev. Lett. 115, 036104 (2015).
(
10.1103/PhysRevLett.115.036104
) / Phys. Rev. Lett. by W Liu (2015) -
Hohman, J. N. et al. Exchange reactions between alkanethiolates and alkaneselenols on Au{111}. J. Am. Chem. Soc. 136, 8110–8121 (2014).
(
10.1021/ja503432f
) / J. Am. Chem. Soc. by JN Hohman (2014) -
Schmøkel, M. S. et al. Testing the concept of hypervalency: charge density analysis of K2SO4 . Inorg. Chem. 51, 8607–8616 (2012).
(
10.1021/ic301372m
) / Inorg. Chem. by MS Schmøkel (2012) -
Tang, Q. & Jiang, D.-E. Insights into the PhC≡C/Au interface. J. Phys. Chem. C 119, 10804–10810 (2014).
(
10.1021/jp508883v
) / J. Phys. Chem. C by Q Tang (2014) -
Zaba, T. et al. Formation of highly ordered self-assembled monolayers of alkynes on Au(111) substrate. J. Am. Chem. Soc. 136, 11918–11921 (2014).
(
10.1021/ja506647p
) / J. Am. Chem. Soc. by T Zaba (2014) -
Li, Y., Silverton, L. C., Haasch, R. & Tong, Y. Y. Alkanetelluroxide-protected gold nanoparticles. Langmuir 24, 7048–7053 (2008).
(
10.1021/la800515b
) / Langmuir by Y Li (2008) -
Kurashige, W. et al. Au25 clusters containing unoxidized tellurolates in the ligand shell. J. Phys. Chem. Lett. 5, 2072–2076 (2014).
(
10.1021/jz500901f
) / J. Phys. Chem. Lett. by W Kurashige (2014) -
Reimers, J. R., Wang, Y., Cankurtaran, B. O. & Ford, M. J. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles. J. Am. Chem. Soc. 132, 8378–8384 (2010).
(
10.1021/ja101083v
) / J. Am. Chem. Soc. by JR Reimers (2010) -
Zhang, J. & Ulstrup, J. Oxygen-free in situ scanning tunnelling microscopy. J. Electroanal. Chem. 599, 213–220 (2007).
(
10.1016/j.jelechem.2006.02.011
) / J. Electroanal. Chem. by J Zhang (2007) -
McAdon, M. H. & Goddard, W. A. Charge density waves, spin density waves, and Peierls distortions in one-dimensional metals. 1. Hartree–Fock studies of Cu, Ag, Au, Li, and Na. J. Chem. Phys. 88, 277–302 (1988).
(
10.1063/1.454654
) / J. Chem. Phys. by MH McAdon (1988) -
McAdon, M. H. & Goddard, W. A. Charge density waves, spin density waves, and Peierls distortions in one-dimensional metals. 2. Generalized valence bond studies of copper, silver, gold, lithium and sodium. J. Phys. Chem. 92, 1352–1365 (1988).
(
10.1021/j100316a067
) / J. Phys. Chem. by MH McAdon (1988) -
Fang, J. et al. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 322, 1–29 (2016).
(
10.1016/j.ccr.2016.05.003
) / Coord. Chem. Rev. by J Fang (2016) -
De, M., Ghosh, P. S. & Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 20, 4225–4241 (2008).
(
10.1002/adma.200703183
) / Adv. Mater. by M De (2008) -
Sapsford, K. E. et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113, 1904–2074 (2013).
(
10.1021/cr300143v
) / Chem. Rev. by KE Sapsford (2013) -
Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).
(
10.1021/cr2001178
) / Chem. Rev. by K Saha (2012) -
Zhang, L. & Wang, E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014).
(
10.1016/j.nantod.2014.02.010
) / Nano Today by L Zhang (2014) -
Muthu, M. S., Agrawal, P. & Singh, S. Theranostic nanomedicine of gold nanoclusters: an emerging platform for cancer diagnosis and therapy. Nanomedicine 11, 327–330 (2016).
(
10.2217/nnm.15.198
) / Nanomedicine by MS Muthu (2016) -
Whitesides, G. M. & Laibinis, P. E. Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir 6, 87–96 (1990).
(
10.1021/la00091a013
) / Langmuir by GM Whitesides (1990) -
Schmidbaur, H. Ludwig Mond Lecture. High-carat gold compounds. Chem. Soc. Rev. 24, 391–400 (1995).
(
10.1039/cs9952400391
) / Chem. Soc. Rev. by H Schmidbaur (1995) -
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).
(
10.1021/cr0300789
) / Chem. Rev. by JC Love (2005) -
Hutchings, G. J., Brust, M. & Schmidbaur, H. Gold — an introductory perspective. Chem. Soc. Rev. 37, 1759–1765 (2008).
(
10.1039/b810747p
) / Chem. Soc. Rev. by GJ Hutchings (2008) -
Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).
(
10.1021/ar800018v
) / Acc. Chem. Res. by SE Skrabalak (2008) -
Sardar, R., Funston, A. M., Mulvaney, P. & Murray, R. W. Gold nanoparticles: past, present, and future. Langmuir 25, 13840–13851 (2009).
(
10.1021/la9019475
) / Langmuir by R Sardar (2009) -
Zhao, P., Li, N. & Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638–665 (2013).
(
10.1016/j.ccr.2012.09.002
) / Coord. Chem. Rev. by P Zhao (2013) -
Kurashige, W., Niihori, Y., Sharma, S. & Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 320–321, 238–250 (2016).
(
10.1016/j.ccr.2016.02.013
) / Coord. Chem. Rev. by W Kurashige (2016) -
Goswami, N., Yao, Q., Chen, T. & Xie, J. Mechanistic exploration and controlled synthesis of precise thiolate–gold nanoclusters. Coord. Chem. Rev. 329, 1–15 (2016).
(
10.1016/j.ccr.2016.09.001
) / Coord. Chem. Rev. by N Goswami (2016) -
Pensa, E. et al. The chemistry of the sulfur–gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012).
(
10.1021/ar200260p
) / Acc. Chem. Res. by E Pensa (2012) -
Maksymovych, P., Sorescu, D. C. & Yates, J. T. Jr. Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006).
(
10.1103/PhysRevLett.97.146103
) / Phys. Rev. Lett. by P Maksymovych (2006) -
Jiang, D.-E., Tiago, M. L., Luo, W. D. & Dai, S. The “staple” motif: a key to stability of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 130, 2777–2779 (2008).
(
10.1021/ja710991n
) / J. Am. Chem. Soc. by D-E Jiang (2008) -
Wang, Y. et al. Chain-branching control of the atomic structure of alkanethiol-based gold–sulfur interfaces. J. Am. Chem. Soc. 133, 14856–14859 (2011).
(
10.1021/ja204958h
) / J. Am. Chem. Soc. by Y Wang (2011) -
Yan, J. et al. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111). J. Am. Chem. Soc. 136, 17087–17094 (2014).
(
10.1021/ja508100c
) / J. Am. Chem. Soc. by J Yan (2014) -
Ouyang, R. et al. Intermixed adatom and surface bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111). ChemPhysChem 16, 928–932 (2015).
(
10.1002/cphc.201402904
) / ChemPhysChem by R Ouyang (2015) -
Grumelli, D., Maza, F. L., Kern, K., Salvarezza, R. C. & Carro, P. Surface structure and chemistry of alkanethiols on Au(100)-(1×1) substrates. J. Phys. Chem. C 120, 291–296 (2016).
(
10.1021/acs.jpcc.5b09459
) / J. Phys. Chem. C by D Grumelli (2016) -
Chadha, R. K., Kumar, R. & Tuck, D. G. The direct electrochemical synthesis of thiolato complexes of copper, silver, and gold; the molecular structure of [Cu(SC6H4CH3-o)(1,10-phenanthroline)]2·CH3CN. Can. J. Chem. 65, 1336–1342 (1987).
(
10.1139/v87-224
) / Can. J. Chem. by RK Chadha (1987) -
Wang, Y., Hush, N. S. & Reimers, J. R. Understanding the chemisorption of 2-methyl-2-propanethiol on Au(111). J. Phys. Chem. C 111, 10878–10885 (2007).
(
10.1021/jp068833k
) / J. Phys. Chem. C by Y Wang (2007) -
Bandyopadhyay, S., Chattopadhyay, S. & Dey, A. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles. Phys. Chem. Chem. Phys. 17, 24866–24873 (2015).
(
10.1039/C5CP04450B
) / Phys. Chem. Chem. Phys. by S Bandyopadhyay (2015) -
Brust, M., Fink, J., Bethell, D., Schiffrin, D. J. & Kiely, C. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun. 1655–1656 (1995).
(
10.1039/c39950001655
) -
Romero, E. A., Peltier, J. L., Jazzar, R. & Bertrand, G. Catalyst-free dehydrocoupling of amines, alcohols, and thiols with pinacol borane and 9-borabicyclononane (9-BBN). Chem. Commun. 52, 10563–10565 (2016).
(
10.1039/C6CC06096J
) / Chem. Commun. by EA Romero (2016) -
Civit, M. G. et al. Ynones merge activation/conjugate addition of chalcogenoborates ArE-Bpin (E = Se, S). Adv. Synth. Catal. 357, 3098–3103 (2015).
(
10.1002/adsc.201500650
) / Adv. Synth. Catal. by MG Civit (2015) -
Solé, C. & Fernández, E. Alkoxide activation of aminoboranes towards selective amination. Angew. Chem. Int. Ed. 52, 11351–11355 (2013).
(
10.1002/anie.201305098
) / Angew. Chem. Int. Ed. by C Solé (2013) -
Davis, R. E. & Gottbrath, J. A. Boron hydrides. V. Methanolysis sodium borohydride. J. Am. Chem. Soc. 84, 895–898 (1962).
(
10.1021/ja00865a003
) / J. Am. Chem. Soc. by RE Davis (1962) -
Negishi, Y. & Tsukuda, T. One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. J. Am. Chem. Soc. 125, 4046–4047 (2003).
(
10.1021/ja0297483
) / J. Am. Chem. Soc. by Y Negishi (2003) -
Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F. & Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646 (1998).
(
10.1021/jp9830528
) / J. Phys. Chem. B by TG Schaaff (1998) -
Goulet, P. J. G. & Lennox, R. B. New insights into Brust–Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 132, 9582–9584 (2010).
(
10.1021/ja104011b
) / J. Am. Chem. Soc. by PJG Goulet (2010) -
Li, Y., Zaluzhna, O. & Tong, Y. J. Critical role of water and the structure of inverse micelles in the Brust–Schiffrin synthesis of metal nanoparticles. Langmuir 27, 7366–7370 (2011).
(
10.1021/la201158v
) / Langmuir by Y Li (2011) -
Perala, S. R. K. & Kumar, S. On the mechanism of metal nanoparticle synthesis in the Brust–Schiffrin method. Langmuir 29, 9863–9873 (2013).
(
10.1021/la401604q
) / Langmuir by SRK Perala (2013) -
Yu, C. et al. Investigation on the mechanism of the synthesis of gold(I) thiolate complexes by NMR. J. Phys. Chem. C 118, 10434–10440 (2014).
(
10.1021/jp501020k
) / J. Phys. Chem. C by C Yu (2014) -
Uehara, A. et al. Electrochemical insight into the Brust–Schiffrin synthesis of Au nanoparticles. J. Am. Chem. Soc. 137, 15135–15144 (2015).
(
10.1021/jacs.5b07825
) / J. Am. Chem. Soc. by A Uehara (2015) -
Marbella, L. E. et al. Description and role of bimetallic prenucleation species in the formation of small nanoparticle alloys. J. Am. Chem. Soc. 137, 15852–15858 (2015).
(
10.1021/jacs.5b10124
) / J. Am. Chem. Soc. by LE Marbella (2015) -
Zhu, L. et al. New insight into intermediate precursors of Brust–Schiffrin gold nanoparticles synthesis. J. Phys. Chem. C 117, 11399–11404 (2013).
(
10.1021/jp402116x
) / J. Phys. Chem. C by L Zhu (2013) -
Graham, T. R., Renslow, R., Govind, N. & Saunders, S. R. Precursor ion–ion aggregation in the Brust–Schiffrin synthesis of alkanethiol nanoparticles. J. Phys. Chem. C 120, 19837–19847 (2016).
(
10.1021/acs.jpcc.6b06155
) / J. Phys. Chem. C by TR Graham (2016) -
Zaluzhna, O., Li, Y., Zangmeister, C., Allison, T. C. & Tong, Y. J. Mechanistic insights on one-phase versus two-phase Brust–Schiffrin method synthesis of Au nanoparticles with dioctyl-diselenides. Chem. Commun. 48, 362–364 (2012).
(
10.1039/C1CC15955K
) / Chem. Commun. by O Zaluzhna (2012) -
Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).
(
10.1103/PhysRevB.45.13244
) / Phys. Rev. B by JP Perdew (1992) - Otero de la Roza, A. & DiLabio, G. (eds) Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications in press (Elsevier, 2017). / Noncovalent Interactions in Quantum Chemistry and Physics: Theory and Applications by A Otero de la Roza (2017)
-
Mäkinen, V., Koskinen, P. & Häkkinen, H. Modeling thiolate-protected gold clusters with density-functional tight-binding. Eur. Phys. J. D 67, 38 (2013).
(
10.1140/epjd/e2012-30486-4
) / Eur. Phys. J. D by V Mäkinen (2013) -
Perdew, J. P., Burke, W. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Bilic, A., Reimers, J. R., Hush, N. S. & Hafner, J. Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116, 8981–8987 (2002).
(
10.1063/1.1471245
) / J. Chem. Phys. by A Bilic (2002) -
Wang, Y., Hush, N. S. & Reimers, J. R. Formation of gold-methanethiyl self-assembled monolayers. J. Am. Chem. Soc. 129, 14532–14533 (2007).
(
10.1021/ja0743442
) / J. Am. Chem. Soc. by Y Wang (2007) -
Cafe, P. F. et al. Chemisorbed and physisorbed structures for 1,10-phenanthroline and dipyrido[3,2-a:2ʹ,3ʹ-c]phenazine on Au(111). J. Phys. Chem. C 111, 17285–17296 (2007).
(
10.1021/jp0736591
) / J. Phys. Chem. C by PF Cafe (2007) - Towler, M. D. in Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology (ed. Reimers, J. R. ) 119–166 (Wiley, 2011). / Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology by MD Towler (2011)
-
Al-Hamdani, Y. S., Ma, M., Alfè, D., von Lilienfeld, O. A. & Michaelides, A. Communication: water on hexagonal boron nitride from diffusion Monte Carlo. J. Chem. Phys. 142, 181101 (2015).
(
10.1063/1.4921106
) / J. Chem. Phys. by YS Al-Hamdani (2015) -
Booth, G. H., Grüneis, A., Kresse, G. & Alavi, A. Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370 (2013).
(
10.1038/nature11770
) / Nature by GH Booth (2013) -
Booth, G. H., Thom, A. J. W. & Alavi, A. Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106 (2009).
(
10.1063/1.3193710
) / J. Chem. Phys. by GH Booth (2009) -
Dubecký, M., Mitas, L. & Jurecˇka, P. Noncovalent interactions by quantum Monte Carlo. Chem. Rev. 116, 5188–5215 (2016).
(
10.1021/acs.chemrev.5b00577
) / Chem. Rev. by M Dubecký (2016) -
Grüneis, A. A coupled cluster and Møller–Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal. J. Chem. Phys. 143, 102817 (2015).
(
10.1063/1.4928645
) / J. Chem. Phys. by A Grüneis (2015) -
Voloshina, E. & Paulus, B. First multireference correlation treatment of bulk metals. J. Chem. Theory Comput. 10, 1698–1706 (2014).
(
10.1021/ct401040t
) / J. Chem. Theory Comput. by E Voloshina (2014) -
Olsen, T. & Thygesen, K. S. Beyond the random phase approximation: improved description of short-range correlation by a renormalized adiabatic local density approximation. Phys. Rev. B 88, 115131 (2013).
(
10.1103/PhysRevB.88.115131
) / Phys. Rev. B by T Olsen (2013) -
Gould, T. Communication: beyond the random phase approximation on the cheap: improved correlation energies with the efficient “radial exchange hole” kernel. J. Chem. Phys. 137, 111101 (2012).
(
10.1063/1.4755286
) / J. Chem. Phys. by T Gould (2012) -
Goerigk, L. & Grimme, S. Double-hybrid density functionals. WIREs Comput. Mol. Sci. 4, 576–600 (2014).
(
10.1002/wcms.1193
) / WIREs Comput. Mol. Sci. by L Goerigk (2014) -
Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).
(
10.1021/acs.chemrev.5b00533
) / Chem. Rev. by S Grimme (2016) -
Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).
(
10.1063/1.2148954
) / J. Chem. Phys. by S Grimme (2006) -
Goerigk, L. & Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals — evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011).
(
10.1021/ct100466k
) / J. Chem. Theory Comput. by L Goerigk (2011) -
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
(
10.1039/b810189b
) / Phys. Chem. Chem. Phys. by J-D Chai (2008) -
Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).
(
10.1016/j.cplett.2004.06.011
) / Chem. Phys. Lett. by T Yanai (2004) -
Cai, Z.-L., Crossley, M. J., Reimers, J. R., Kobayashi, R. & Amos, R. D. Density-functional theory for charge-transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 110, 15624–15632 (2006).
(
10.1021/jp063376t
) / J. Phys. Chem. B by Z-L Cai (2006) -
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).
(
10.1007/s00214-007-0310-x
) / Theor. Chem. Acc. by Y Zhao (2008) -
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
(
10.1002/jcc.21759
) / J. Comput. Chem. by S Grimme (2011) -
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
(
10.1063/1.3382344
) / J. Chem. Phys. by S Grimme (2010) -
Tkatchenko, A., Distasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).
(
10.1103/PhysRevLett.108.236402
) / Phys. Rev. Lett. by A Tkatchenko (2012) -
Ambrosetti, A., Reilly, A. M., Distasio Jr, R. A. & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18a508 (2014).
(
10.1063/1.4865104
) / J. Chem. Phys. by A Ambrosetti (2014) -
Christian, M. S., Otero-de-la-Roza, A. & Johnson, E. R. Surface adsorption from the exchange–hole dipole moment dispersion model. J. Chem. Theory Comput. 12, 3305–3315 (2016).
(
10.1021/acs.jctc.6b00222
) / J. Chem. Theory Comput. by MS Christian (2016) -
Vydrov, O. A. & Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010).
(
10.1063/1.3521275
) / J. Chem. Phys. by OA Vydrov (2010) -
Dion, M., Rydberg, H., Schrö der, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401–246401 (2004).
(
10.1103/PhysRevLett.92.246401
) / Phys. Rev. Lett. by M Dion (2004) -
Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).
(
10.1103/PhysRevB.82.081101
) / Phys. Rev. B by K Lee (2010) -
Erhard, J., Bleiziffer, P. & Görling, A. Power series approximation for the correlation kernel leading to Kohn–Sham methods combining accuracy, computational efficiency, and general applicability. Phys. Rev. Lett. 117, 143002 (2016).
(
10.1103/PhysRevLett.117.143002
) / Phys. Rev. Lett. by J Erhard (2016) -
Eshuis, H., Bates, J. E. & Furche, F. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 131, 1084 (2012).
(
10.1007/s00214-011-1084-8
) / Theor. Chem. Acc. by H Eshuis (2012) -
Gillan, M. J., Alfè, D., Bygrave, P. J., Taylor, C. R. & Manby, F. R. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion. J. Chem. Phys. 139, 114101 (2013).
(
10.1063/1.4820906
) / J. Chem. Phys. by MJ Gillan (2013) -
Paulus, B. The method of increments — a wavefunction-based ab initio correlation method for solids. Phys. Rep. 428, 1–52 (2006).
(
10.1016/j.physrep.2006.01.003
) / Phys. Rep. by B Paulus (2006) -
Muller, C. & Paulus, B. Wavefunction-based electron correlation methods for solids. Phys. Chem. Chem. Phys. 14, 7605–7614 (2012).
(
10.1039/c2cp24020c
) / Phys. Chem. Chem. Phys. by C Muller (2012) -
Stoll, H., Paulus, B. & Fulde, P. An incremental coupled-cluster approach to metallic lithium. Chem. Phys. Lett. 469, 90–93 (2009).
(
10.1016/j.cplett.2008.12.042
) / Chem. Phys. Lett. by H Stoll (2009) -
de Lara-Castells, M. P., Mitrushchenkov, A. O. & Stoll, H. Combining density functional and incremental post-Hartree–Fock approaches for van der Waals dominated adsorbate–surface interactions: Ag2/graphene. J. Chem. Phys. 143, 102804 (2015).
(
10.1063/1.4919397
) / J. Chem. Phys. by MP de Lara-Castells (2015) -
de Lara-Castells, M. P. et al. A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of 4He nanodroplets on surfaces: 4He/graphene. J. Chem. Phys. 141, 151102 (2014).
(
10.1063/1.4898430
) / J. Chem. Phys. by MP de Lara-Castells (2014) -
Rolik, Z., Szegedy, L., Ladjánszki, I., Ladóczki, B. & Kállay, M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 139, 094105 (2013).
(
10.1063/1.4819401
) / J. Chem. Phys. by Z Rolik (2013) -
Kruse, H. & Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems. J. Chem. Phys. 136, 154101 (2012).
(
10.1063/1.3700154
) / J. Chem. Phys. by H Kruse (2012) -
Goerigk, L. & Reimers, J. R. Efficient methods for the quantum chemical treatment of protein structures: the effects of London-dispersion and basis-set incompleteness on peptide and water-cluster geometries. J. Chem. Theory Comput. 9, 3240–3251 (2013).
(
10.1021/ct400321m
) / J. Chem. Theory Comput. by L Goerigk (2013) -
Fedorov, D. G., Nagata, T. & Kitaura, K. Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012).
(
10.1039/c2cp23784a
) / Phys. Chem. Chem. Phys. by DG Fedorov (2012) -
Canfield, P., Dahlbom, M. G., Reimers, J. R. & Hush, N. S. Density-functional geometry optimization of the 150000-atom photosystem-I trimer. J. Chem. Phys. 124, 024301 (2006).
(
10.1063/1.2148956
) / J. Chem. Phys. by P Canfield (2006) -
Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).
(
10.1021/cr9904009
) / Chem. Rev. by J Tomasi (2005) -
Floris, F. M., Tomasi, J. & Pascual Ahuir, J. L. Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. J. Computat. Chem. 12, 784–791 (1991).
(
10.1002/jcc.540120703
) / J. Computat. Chem. by FM Floris (1991) -
Reimers, J. R. et al. From chaos to order: chain-length dependence of the free energy of formation of tetraalkylporphyrin self-assembled monolayer polymorphs J. Phys. Chem. C 120, 1739–1748 (2016).
(
10.1021/acs.jpcc.5b11621
) / J. Phys. Chem. C by JR Reimers (2016) -
Reimers, J. R. et al. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers. Proc. Natl Acad. Sci. USA 112, E6101–E6110 (2015).
(
10.1073/pnas.1516984112
) / Proc. Natl Acad. Sci. USA by JR Reimers (2015) -
Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011).
(
10.1039/c0cp02984j
) / Phys. Chem. Chem. Phys. by L Goerigk (2011) -
Fajín, J. L. C., Teixeira, F., Gomes, J. R. B. & Cordeiro, M. N. D. S. Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold. Theor. Chem. Acc. 134, 67 (2015).
(
10.1007/s00214-015-1666-y
) / Theor. Chem. Acc. by JLC Fajín (2015) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Voloshina, E. & Dedkov, Y. S. Graphene on metallic surfaces: problems and perspectives. Phys. Chem. Chem. Phys. 14, 13502–13514 (2012).
(
10.1039/c2cp42171b
) / Phys. Chem. Chem. Phys. by E Voloshina (2012) -
Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: The effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).
(
10.1103/PhysRevLett.114.096101
) / Phys. Rev. Lett. by W Gao (2015) -
Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1. 1 Å resolution. Science 318, 430–433 (2007).
(
10.1126/science.1148624
) / Science by PD Jadzinsky (2007)
Dates
Type | When |
---|---|
Created | 8 years, 6 months ago (Feb. 8, 2017, 11:06 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 22, 2022, 9:54 p.m.) |
Indexed | 4 weeks, 2 days ago (July 25, 2025, 5:55 a.m.) |
Issued | 8 years, 6 months ago (Feb. 8, 2017) |
Published | 8 years, 6 months ago (Feb. 8, 2017) |
Published Online | 8 years, 6 months ago (Feb. 8, 2017) |
@article{Reimers_2017, title={Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles}, volume={1}, ISSN={2397-3358}, url={http://dx.doi.org/10.1038/s41570-017-0017}, DOI={10.1038/s41570-017-0017}, number={2}, journal={Nature Reviews Chemistry}, publisher={Springer Science and Business Media LLC}, author={Reimers, Jeffrey R. and Ford, Michael J. and Marcuccio, Sebastian M. and Ulstrup, Jens and Hush, Noel S.}, year={2017}, month=feb }