Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

He, M., Li, Y., Cai, J., Liu, Y., Watanabe, K., Taniguchi, T., Xu, X., & Yankowitz, M. (2020). Symmetry breaking in twisted double bilayer graphene. Nature Physics, 17(1), 26–30.

Authors 8
  1. Minhao He (first)
  2. Yuhao Li (additional)
  3. Jiaqi Cai (additional)
  4. Yang Liu (additional)
  5. K. Watanabe (additional)
  6. T. Taniguchi (additional)
  7. Xiaodong Xu (additional)
  8. Matthew Yankowitz (additional)
References 38 Referenced 178
  1. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  3. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  4. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  5. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020). (10.1103/PhysRevLett.124.076801) / Phys. Rev. Lett. by Y Cao (2020)
  6. Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019). (10.1038/s41567-019-0596-3) / Nat. Phys. by H Polshyn (2019)
  7. Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Nature 574, 653–657 (2019). (10.1038/s41586-019-1695-0) / Nature by X Lu (2019)
  8. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020). (10.1126/science.aay5533) / Science by M Serlin (2020)
  9. Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020). (10.1038/s41586-020-2459-6) / Nature by P Stepanov (2020)
  10. Saito, Y., Ge, J., Watanabe, K., Tanighuchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-0928-3 (2020). (10.1038/s41567-020-0928-3)
  11. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). (10.1038/s41567-020-0825-9) / Nat. Phys. by C Shen (2020)
  12. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020). (10.1038/s41586-020-2458-7) / Nature by X Liu (2020)
  13. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 583, 215–220 (2020). (10.1038/s41586-020-2260-6) / Nature by Y Cao (2020)
  14. Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019). (10.1103/PhysRevLett.123.197702) / Phys. Rev. Lett. by GW Burg (2019)
  15. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). (10.1038/s41567-018-0387-2) / Nat. Phys. by G Chen (2019)
  16. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). (10.1038/s41586-019-1393-y) / Nature by G Chen (2019)
  17. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020). (10.1038/s41586-020-2049-7) / Nature by G Chen (2020)
  18. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). (10.1038/s41586-020-2085-3) / Nature by Y Tang (2020)
  19. Regan, E. C. et al. Mott and generalized wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). (10.1038/s41586-020-2092-4) / Nature by EC Regan (2020)
  20. Wang, L. et al. Correlated electronic phases in twisted bilayer transistion metal dichalcogenides. Nat. Mater. 19, 861–866 (2020). (10.1038/s41563-020-0708-6) / Nat. Mater. by L Wang (2020)
  21. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). / Phys. Rev. X by HC Po (2018)
  22. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  23. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019). (10.1038/s41586-019-1460-4) / Nature by Y Jiang (2019)
  24. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019). (10.1038/s41586-019-1431-9) / Nature by A Kerelsky (2019)
  25. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019). (10.1038/s41586-019-1422-x) / Nature by Y Xie (2019)
  26. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019). (10.1038/s41567-019-0606-5) / Nat. Phys. by Y Choi (2019)
  27. Adak, P. C. et al. Tunable bandwidths and gaps in twisted double bilayer graphene on the verge of correlations. Phys. Rev. B 101, 125428 (2020). (10.1103/PhysRevB.101.125428) / Phys. Rev. B by PC Adak (2020)
  28. Lee, J. Y. et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat. Commun. 10, 5333 (2019). (10.1038/s41467-019-12981-1) / Nat. Commun. by JY Lee (2019)
  29. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). (10.1038/nnano.2008.58) / Nat. Nanotechnol. by J-H Chen (2008)
  30. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  31. Kasuya, T. Electrical resistance of ferromagnetic metals. Prog. Theor. Phys. 16, 58–63 (1956). (10.1143/PTP.16.58) / Prog. Theor. Phys. by T Kasuya (1956)
  32. Petrova, A. E., Bauer, E. D., Krasnorussky, V. & Stishov, S. M. Behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition. Phys. Rev. B 74, 092401 (2006). (10.1103/PhysRevB.74.092401) / Phys. Rev. B by AE Petrova (2006)
  33. Rotter, M. et al. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys. Rev. B 78, 020503(R) (2008). (10.1103/PhysRevB.78.020503) / Phys. Rev. B by M Rotter (2008)
  34. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
  35. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). (10.1103/PhysRevLett.117.116804) / Phys. Rev. Lett. by Y Cao (2016)
  36. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
  37. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020). (10.1038/s41586-020-2339-0) / Nature by D Wong (2020)
  38. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020). (10.1038/s41586-020-2373-y) / Nature by U Zondiner (2020)
Dates
Type When
Created 4 years, 11 months ago (Sept. 14, 2020, 12:04 p.m.)
Deposited 3 years, 11 months ago (Sept. 13, 2021, 7:14 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:04 a.m.)
Issued 4 years, 11 months ago (Sept. 14, 2020)
Published 4 years, 11 months ago (Sept. 14, 2020)
Published Online 4 years, 11 months ago (Sept. 14, 2020)
Published Print 4 years, 7 months ago (Jan. 1, 2021)
Funders 4
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards2
    1. MRSEC 1719797
    2. DMR-1725221
  2. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. BES DE-SC0018171
  3. MEXT | JST | Core Research for Evolutional Science and Technology 10.13039/501100003382 Core Research for Evolutional Science and Technology

    Region: Asia

    gov (Local government)

    Labels3
    1. Core Research for Evolutionary Science and Technology
    2. 進化科学技術のコア研究
    3. CREST
    Awards1
    1. (JPMJCR15F3), JST
  4. United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office 10.13039/100000183 Army Research Office

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO
    Awards1
    1. W911NF-20-1-0211

@article{He_2020, title={Symmetry breaking in twisted double bilayer graphene}, volume={17}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/s41567-020-1030-6}, DOI={10.1038/s41567-020-1030-6}, number={1}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={He, Minhao and Li, Yuhao and Cai, Jiaqi and Liu, Yang and Watanabe, K. and Taniguchi, T. and Xu, Xiaodong and Yankowitz, Matthew}, year={2020}, month=sep, pages={26–30} }