Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Kennes, D. M., Claassen, M., Xian, L., Georges, A., Millis, A. J., Hone, J., Dean, C. R., Basov, D. N., Pasupathy, A. N., & Rubio, A. (2021). Moiré heterostructures as a condensed-matter quantum simulator. Nature Physics, 17(2), 155–163.

Authors 10
  1. Dante M. Kennes (first)
  2. Martin Claassen (additional)
  3. Lede Xian (additional)
  4. Antoine Georges (additional)
  5. Andrew J. Millis (additional)
  6. James Hone (additional)
  7. Cory R. Dean (additional)
  8. D. N. Basov (additional)
  9. Abhay N. Pasupathy (additional)
  10. Angel Rubio (additional)
References 113 Referenced 474
  1. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017). (10.1038/nmat5017) / Nat. Mater. by DN Basov (2017)
  2. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). (10.1007/BF02650179) / Int. J. Theor. Phys. by RP Feynman (1982)
  3. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012). (10.1038/nphys2259) / Nat. Phys. by I Bloch (2012)
  4. Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017). (10.1126/science.aam7127) / Science by B-X Zheng (2017)
  5. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  6. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  7. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  8. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  9. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020). (10.1038/s41567-020-0906-9) / Nat. Phys. by L Balents (2020)
  10. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). (10.1038/s41586-019-1393-y) / Nature by G Chen (2019)
  11. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). (10.1038/s41567-018-0387-2) / Nat. Phys. by G Chen (2019)
  12. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020). (10.1038/s41586-020-2458-7) / Nature by X Liu (2020)
  13. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). (10.1038/s41567-020-0825-9) / Nat. Phys. by C Shen (2020)
  14. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020). (10.1038/s41586-020-2260-6) / Nature by Y Cao (2020)
  15. Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019). (10.1103/PhysRevLett.123.197702) / Phys. Rev. Lett. by GW Burg (2019)
  16. He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021). (10.1038/s41567-020-1030-6) / Nat. Phys. by M He (2021)
  17. Yuan, N. F. Q. & Fu, L. Model for the metal–insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018). (10.1103/PhysRevB.98.045103) / Phys. Rev. B by NFQ Yuan (2018)
  18. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018). / Phys. Rev. X by M Koshino (2018)
  19. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  20. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). (10.1038/s41586-019-1695-0) / Nature by X Lu (2019)
  21. Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020). (10.1038/s41586-020-2459-6) / Nature by P Stepanov (2020)
  22. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  23. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020). (10.1126/science.aay5533) / Science by M Serlin (2020)
  24. Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018). (10.1103/PhysRevLett.121.087001) / Phys. Rev. Lett. by C Xu (2018)
  25. Liu, C.-C., Zhang, L.-D., Chen, W.-Q. & Yang, F. Chiral spin density wave and d + id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett. 121, 217001 (2018). (10.1103/PhysRevLett.121.217001) / Phys. Rev. Lett. by C-C Liu (2018)
  26. Kennes, D. M., Lischner, J. & Karrasch, C. Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407 (2018). (10.1103/PhysRevB.98.241407) / Phys. Rev. B by DM Kennes (2018)
  27. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2007). (10.1103/RevModPhys.80.1083) / Rev. Mod. Phys. by C Nayak (2007)
  28. Claassen, M., Kennes, D. M., Zingl, M., Sentef, M. A. & Rubio, A. Universal optical control of chiral superconductors and Majorana modes. Nat. Phys. 15, 766–770 (2018). (10.1038/s41567-019-0532-6) / Nat. Phys. by M Claassen (2018)
  29. Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Preprint at https://arxiv.org/abs/2004.02964 (2020). A study of twisted bilayer MoS2 shown to feature strongly asymmetric px–py multi-orbital low-energy electronic bands. (10.21203/rs.3.rs-125590/v1)
  30. Angeli, M. & MacDonald, A. γ-valley transition-metal-dichalcogenide moiré bands. Preprint at https://arxiv.org/abs/2008.01735 (2020).
  31. Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018). (10.1103/PhysRevLett.121.266401) / Phys. Rev. Lett. by MH Naik (2018)
  32. Xian, L., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat bands and strong correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Nano Lett. 19, 4934–4940 (2019). (10.1021/acs.nanolett.9b00986) / Nano Lett. by L Xian (2019)
  33. Ni, G. X. et al. Soliton superlattices in twisted hexagonal boron nitride. Nat. Commun. 10, 4360 (2019). (10.1038/s41467-019-12327-x) / Nat. Commun. by GX Ni (2019)
  34. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020). (10.1038/s41563-020-0708-6) / Nat. Mater. by L Wang (2020)
  35. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). (10.1038/s41586-020-2092-4) / Nature by EC Regan (2020)
  36. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). (10.1038/s41586-020-2085-3) / Nature by Y Tang (2020)
  37. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018). (10.1103/PhysRevLett.121.026402) / Phys. Rev. Lett. by F Wu (2018)
  38. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003). (10.1103/PhysRevLett.91.107001) / Phys. Rev. Lett. by Y Shimizu (2003)
  39. Kagawa, F., Miyagawa, K. & Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 436, 534–537 (2005). (10.1038/nature03806) / Nature by F Kagawa (2005)
  40. Tajima, N., Sugawara, S., Tamura, M., Nishio, Y. & Kajita, K. Electronic phases in an organic conductor α-(BEDT-TTF)2I3: ultra narrow gap semiconductor, superconductor, metal, and charge-ordered insulator. J. Phys. Soc. Jpn 75, 051010–051010 (2006). (10.1143/JPSJ.75.051010) / J. Phys. Soc. Jpn by N Tajima (2006)
  41. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020). / Phys. Rev. X by A Szasz (2020)
  42. Kariyado, T. & Vishwanath, A. Flat band in twisted bilayer Bravais lattices. Phys. Rev. Res. 1, 033076 (2019). (10.1103/PhysRevResearch.1.033076) / Phys. Rev. Res. by T Kariyado (2019)
  43. Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020). (10.1038/s41467-020-14947-0) / Nat. Commun. by DM Kennes (2020)
  44. Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017). (10.1126/science.aad1188) / Science by JW Harter (2017)
  45. Harter, J. W. et al. Evidence of an improper displacive phase transition in Cd2Re2O7 via time-resolved coherent phonon spectroscopy. Phys. Rev. Lett. 120, 047601 (2018). (10.1103/PhysRevLett.120.047601) / Phys. Rev. Lett. by JW Harter (2018)
  46. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019). (10.1038/s41586-019-1460-4) / Nature by Y Jiang (2019)
  47. Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010). (10.1038/nphys1463) / Nat. Phys. by G Li (2010)
  48. Wong, D. et al. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015). (10.1103/PhysRevB.92.155409) / Phys. Rev. B by D Wong (2015)
  49. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  50. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017). (10.1073/pnas.1620140114) / Proc. Natl Acad. Sci. USA by K Kim (2017)
  51. Finney, N. R. et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019). (10.1038/s41565-019-0547-2) / Nat. Nanotechnol. by NR Finney (2019)
  52. Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020). (10.1038/s41567-020-0953-2) / Nat. Phys. by D Edelberg (2020)
  53. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013). (10.1038/nature12186) / Nature by CR Dean (2013)
  54. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019). (10.1038/s41586-019-1431-9) / Nature by A Kerelsky (2019)
  55. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019). (10.1038/s41586-019-1422-x) / Nature by Y Xie (2019)
  56. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019). (10.1038/s41567-019-0606-5) / Nat. Phys. by Y Choi (2019)
  57. Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018). (10.1103/PhysRevLett.121.037702) / Phys. Rev. Lett. by S Huang (2018)
  58. Kerelsky, A. et al. Moiré-less correlations in ABCA graphene. Preprint at https://arxiv.org/abs/1911.00007 (2019).
  59. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018). (10.1126/science.aau5144) / Science by SS Sunku (2018)
  60. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). (10.1038/nmat4792) / Nat. Mater. by T Low (2017)
  61. Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Phys. 10, 743–747 (2014). (10.1038/nphys3075) / Nat. Phys. by Z Shi (2014)
  62. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  63. Liu, M., Sternbach, A. J. & Basov, D. N. Nanoscale electrodynamics of strongly correlated quantum materials. Rep. Prog. Phys. 80, 014501 (2016). (10.1088/0034-4885/80/1/014501) / Rep. Prog. Phys. by M Liu (2016)
  64. Hesp, N. C. H. et al. Collective excitations in twisted bilayer graphene close to the magic angle. Preprint at https://arxiv.org/abs/1910.07893 (2019).
  65. Halbertal, D. et al. Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun. 12, 242 (2021). (10.1038/s41467-020-20428-1) / Nat. Commun. by D Halbertal (2021)
  66. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020). (10.1038/s41565-020-0708-3) / Nat. Nanotechnol. by LJ McGilly (2020)
  67. McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020). (10.1038/s41563-019-0533-y) / Nat. Mater. by AS McLeod (2020)
  68. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016). (10.1038/nphys3538) / Nat. Phys. by X Xi (2016)
  69. Soriano, D., Katsnelson, M. I. & Fernández-Rossier, J. Magnetic two-dimensional chromium thihalides: a theoretical perspective. Nano Lett. 20, 6225–6234 (2020). (10.1021/acs.nanolett.0c02381) / Nano Lett. by D Soriano (2020)
  70. Hejazi, K., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10726 (2020). (10.1073/pnas.2000347117) / Proc. Natl Acad. Sci. USA by K Hejazi (2020)
  71. Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020). (10.1103/PhysRevLett.125.247201) / Phys. Rev. Lett. by C Wang (2020)
  72. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016). (10.1038/nmat4604) / Nat. Mater. by A Banerjee (2016)
  73. Chen, Y. et al. Strong correlations and orbital texture in single-layer 1t-TaSe2. Nat. Phys. 16, 218–224 (2020). (10.1038/s41567-019-0744-9) / Nat. Phys. by Y Chen (2020)
  74. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). (10.1126/science.1256815) / Science by X Qian (2014)
  75. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010). (10.1038/nature08917) / Nature by L Balents (2010)
  76. Island, J. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019). (10.1038/s41586-019-1304-2) / Nature by J Island (2019)
  77. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). (10.1103/PhysRevLett.100.096407) / Phys. Rev. Lett. by L Fu (2008)
  78. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010). (10.1103/PhysRevLett.105.077001) / Phys. Rev. Lett. by RM Lutchyn (2010)
  79. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010). (10.1103/PhysRevLett.105.177002) / Phys. Rev. Lett. by Y Oreg (2010)
  80. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020). (10.1126/science.aba1416) / Science by F Liu (2020)
  81. Darancet, P., Millis, A. J. & Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014). (10.1103/PhysRevB.90.045134) / Phys. Rev. B by P Darancet (2014)
  82. Tang, F. et al. Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5. Nature 569, 537–541 (2019). (10.1038/s41586-019-1180-9) / Nature by F Tang (2019)
  83. Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020). (10.1103/PhysRevResearch.2.022010) / Phys. Rev. Res. by F Wu (2020)
  84. Ruggenthaler, M., Tancogne-Dejean, N., Flick, J., Appel, H. & Rubio, A. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat. Rev. Chem. 2, 0118 (2018). (10.1038/s41570-018-0118) / Nat. Rev. Chem. by M Ruggenthaler (2018)
  85. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. https://doi.org/10.1038/s41563-020-00801-7 (2020). (10.1038/s41563-020-00801-7)
  86. Mazza, G. & Georges, A. Superradiant quantum materials. Phys. Rev. Lett. 122, 017401 (2019). (10.1103/PhysRevLett.122.017401) / Phys. Rev. Lett. by G Mazza (2019)
  87. Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, 6969 (2018). (10.1126/sciadv.aau6969) / Sci. Adv. by MA Sentef (2018)
  88. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2018). (10.1103/PhysRevLett.122.167002) / Phys. Rev. Lett. by JB Curtis (2018)
  89. Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron–photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019). (10.1103/PhysRevLett.122.133602) / Phys. Rev. Lett. by F Schlawin (2019)
  90. Thomas, A. et al. Exploring superconductivity under strong coupling with the vacuum electromagnetic field. Preprint at https://arxiv.org/abs/1911.01459 (2019).
  91. Shimazaki, Y. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). (10.1038/s41586-019-1393-y) / Nature by Y Shimazaki (2019)
  92. Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2018). (10.1038/s41567-018-0346-y) / Nat. Phys. by GL Paravicini-Bagliani (2018)
  93. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018). (10.1126/science.aat5162) / Science by X Li (2018)
  94. Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017). (10.1038/nphoton.2017.121) / Nat. Photon. by Z Sun (2017)
  95. Latini, S., Ronca, E., Giovannini, U. D., Hübener, H. & Rubio, A. Cavity control of excitons in two dimensional materials. Nano Lett. 19, 3473–3479 (2019). (10.1021/acs.nanolett.9b00183) / Nano Lett. by S Latini (2019)
  96. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014). (10.1038/nnano.2014.167) / Nat. Nanotechnol. by X Hong (2014)
  97. Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017). (10.1021/acs.nanolett.7b00748) / Nano Lett. by H Zhu (2017)
  98. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). (10.1126/science.aaw4194) / Science by LA Jauregui (2019)
  99. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). (10.1038/s41586-019-1591-7) / Nature by Z Wang (2019)
  100. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). (10.1038/s41586-019-0976-y) / Nature by C Jin (2019)
  101. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). (10.1038/s41586-020-2191-2) / Nature by Y Shimazaki (2020)
  102. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). (10.1038/s41586-019-0975-z) / Nature by K Tran (2019)
  103. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). (10.1038/s41586-019-0986-9) / Nature by EM Alexeev (2019)
  104. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). (10.1103/PhysRevLett.118.147401) / Phys. Rev. Lett. by F Wu (2017)
  105. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). (10.1038/s41563-020-0730-8) / Nat. Mater. by Y Bai (2020)
  106. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018). (10.1021/acs.nanolett.8b03315) / Nano Lett. by Q Tong (2018)
  107. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). / Phys. Rev. X by HC Po (2018)
  108. Lee, J. Y. et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat. Commun. 10, 5333 (2019). (10.1038/s41467-019-12981-1) / Nat. Commun. by JY Lee (2019)
  109. Efimkin, D. K. & MacDonald, A. H. Helical network model for twisted bilayer graphene. Phys. Rev. B 98, 035404 (2018). (10.1103/PhysRevB.98.035404) / Phys. Rev. B by DK Efimkin (2018)
  110. An, L. et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 5, 1309–1316 (2020). (10.1039/D0NH00248H) / Nanoscale Horiz. by L An (2020)
  111. Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Preprint at https://arxiv.org/abs/2001.03812 (2020).
  112. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018). (10.1126/science.aan8458) / Science by EM Spanton (2018)
  113. Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020). (10.1038/s41586-020-2473-8) / Nature by HS Arora (2020)
Dates
Type When
Created 4 years, 6 months ago (Feb. 1, 2021, 12:39 p.m.)
Deposited 2 years, 6 months ago (Jan. 28, 2023, 7:10 a.m.)
Indexed 27 minutes ago (Aug. 27, 2025, 10:45 a.m.)
Issued 4 years, 6 months ago (Feb. 1, 2021)
Published 4 years, 6 months ago (Feb. 1, 2021)
Published Online 4 years, 6 months ago (Feb. 1, 2021)
Published Print 4 years, 6 months ago (Feb. 1, 2021)
Funders 0

None

@article{Kennes_2021, title={Moiré heterostructures as a condensed-matter quantum simulator}, volume={17}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/s41567-020-01154-3}, DOI={10.1038/s41567-020-01154-3}, number={2}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Kennes, Dante M. and Claassen, Martin and Xian, Lede and Georges, Antoine and Millis, Andrew J. and Hone, James and Dean, Cory R. and Basov, D. N. and Pasupathy, Abhay N. and Rubio, Angel}, year={2021}, month=feb, pages={155–163} }