Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Polshyn, H., Yankowitz, M., Chen, S., Zhang, Y., Watanabe, K., Taniguchi, T., Dean, C. R., & Young, A. F. (2019). Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics, 15(10), 1011–1016.

Authors 8
  1. Hryhoriy Polshyn (first)
  2. Matthew Yankowitz (additional)
  3. Shaowen Chen (additional)
  4. Yuxuan Zhang (additional)
  5. K. Watanabe (additional)
  6. T. Taniguchi (additional)
  7. Cory R. Dean (additional)
  8. Andrea F. Young (additional)
References 35 Referenced 312
  1. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  2. Surez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010). (10.1103/PhysRevB.82.121407) / Phys. Rev. B by E Surez Morell (2010)
  3. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  5. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1901.03520 (2019).
  7. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017). (10.1073/pnas.1620140114) / Proc. Natl Acad. Sci. USA by K Kim (2017)
  8. Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018). (10.1103/PhysRevLett.121.257001) / Phys. Rev. Lett. by F Wu (2018)
  9. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019). (10.1103/PhysRevLett.122.257002) / Phys. Rev. Lett. by B Lian (2019)
  10. Choi, Y. W. & Choi, H. J. Strong electron–phonon coupling, electron–hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene. Phys. Rev. B 98, 241412 (2018). (10.1103/PhysRevB.98.241412) / Phys. Rev. B by YW Choi (2018)
  11. Allen, P. B. in Handbook of Superconductivity (eds Poole, C. P. Jr et al.) 478–489 (Academic Press, 2000).
  12. Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995). (10.1103/PhysRevLett.74.3253) / Phys. Rev. Lett. by VJ Emery (1995)
  13. Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019). (10.1103/PhysRevB.99.165112) / Phys. Rev. B by F Wu (2019)
  14. Yudhistira, I. et al. Gauge-phonon dominated resistivity in twisted bilayer graphene near magic angle. Phys. Rev. B 99 , 140302(R) (2019). (10.1103/PhysRevB.99.140302)
  15. Kim, Y. et al. Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene. Nano Lett. 16, 5053–5059 (2016). (10.1021/acs.nanolett.6b01906) / Nano Lett. by Y Kim (2016)
  16. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). (10.1103/PhysRevLett.117.116804) / Phys. Rev. Lett. by Y Cao (2016)
  17. Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017). (10.1103/PhysRevB.96.075311) / Phys. Rev. B by NNT Nam (2017)
  18. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). (10.1038/nnano.2008.58) / Nat. Nanotechnol. by J-H Chen (2008)
  19. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  20. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008). (10.1103/PhysRevB.77.115449) / Phys. Rev. B by EH Hwang (2008)
  21. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010). (10.1103/PhysRevLett.105.256805) / Phys. Rev. Lett. by DK Efetov (2010)
  22. Komatsu, K. Interpretation of the specific heat of various graphites at very low temperatures. J. Phys. Chem. Solids 25, 707–712 (1964). (10.1016/0022-3697(64)90180-5) / J. Phys. Chem. Solids by K Komatsu (1964)
  23. Bloch, F. Zum elektrischen widerstandsgesetz bei tiefen temperaturen. Z. Phys. 59, 208–214 (1930). (10.1007/BF01341426) / Z. Phys. by F Bloch (1930)
  24. Grüneisen, E. Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur. Ann. Phys. 408, 530–540 (1933). (10.1002/andp.19334080504) / Ann. Phys. by E Grüneisen (1933)
  25. Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. Observation of a Bloch–Grüneisen regime in two-dimensional electron transport. Phys. Rev. B 41, 1278–1281 (1990). (10.1103/PhysRevB.41.1278) / Phys. Rev. B by HL Stormer (1990)
  26. Gorkov, L. P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl Acad. Sci. USA 113, 4646–4651 (2016). (10.1073/pnas.1604145113) / Proc. Natl Acad. Sci. USA by LP Gorkov (2016)
  27. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968). (10.1103/PhysRev.167.331) / Phys. Rev. by WL McMillan (1968)
  28. Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing. Phys. Rev. B 98, 035425 (2018). (10.1103/PhysRevB.98.035425) / Phys. Rev. B by T-F Chung (2018)
  29. Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019). (10.1038/s41567-018-0278-6) / Nat. Phys. by JR Wallbank (2019)
  30. Bruin, J. A., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013). (10.1126/science.1227612) / Science by JA Bruin (2013)
  31. Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004). (10.1038/430512a) / Nature by J Zaanen (2004)
  32. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Preprint at https://arxiv.org/abs/1901.03710 (2019).
  33. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
  34. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017). (10.1038/nature23893) / Nature by AA Zibrov (2017)
  35. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
Dates
Type When
Created 6 years ago (Aug. 5, 2019, 12:03 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6:13 p.m.)
Indexed 3 days, 4 hours ago (Aug. 19, 2025, 6:42 a.m.)
Issued 6 years ago (Aug. 5, 2019)
Published 6 years ago (Aug. 5, 2019)
Published Online 6 years ago (Aug. 5, 2019)
Published Print 5 years, 10 months ago (Oct. 1, 2019)
Funders 0

None

@article{Polshyn_2019, title={Large linear-in-temperature resistivity in twisted bilayer graphene}, volume={15}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/s41567-019-0596-3}, DOI={10.1038/s41567-019-0596-3}, number={10}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Polshyn, Hryhoriy and Yankowitz, Matthew and Chen, Shaowen and Zhang, Yuxuan and Watanabe, K. and Taniguchi, T. and Dean, Cory R. and Young, Andrea F.}, year={2019}, month=aug, pages={1011–1016} }