Crossref
journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Authors
8
- Hryhoriy Polshyn (first)
- Matthew Yankowitz (additional)
- Shaowen Chen (additional)
- Yuxuan Zhang (additional)
- K. Watanabe (additional)
- T. Taniguchi (additional)
- Cory R. Dean (additional)
- Andrea F. Young (additional)
References
35
Referenced
312
-
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
(
10.1073/pnas.1108174108
) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011) -
Surez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
(
10.1103/PhysRevB.82.121407
) / Phys. Rev. B by E Surez Morell (2010) -
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
(
10.1038/nature26154
) / Nature by Y Cao (2018) -
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
(
10.1038/nature26160
) / Nature by Y Cao (2018) -
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
(
10.1126/science.aav1910
) / Science by M Yankowitz (2019) - Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1901.03520 (2019).
-
Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).
(
10.1073/pnas.1620140114
) / Proc. Natl Acad. Sci. USA by K Kim (2017) -
Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).
(
10.1103/PhysRevLett.121.257001
) / Phys. Rev. Lett. by F Wu (2018) -
Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).
(
10.1103/PhysRevLett.122.257002
) / Phys. Rev. Lett. by B Lian (2019) -
Choi, Y. W. & Choi, H. J. Strong electron–phonon coupling, electron–hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene. Phys. Rev. B 98, 241412 (2018).
(
10.1103/PhysRevB.98.241412
) / Phys. Rev. B by YW Choi (2018) - Allen, P. B. in Handbook of Superconductivity (eds Poole, C. P. Jr et al.) 478–489 (Academic Press, 2000).
-
Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).
(
10.1103/PhysRevLett.74.3253
) / Phys. Rev. Lett. by VJ Emery (1995) -
Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).
(
10.1103/PhysRevB.99.165112
) / Phys. Rev. B by F Wu (2019) -
Yudhistira, I. et al. Gauge-phonon dominated resistivity in twisted bilayer graphene near magic angle. Phys. Rev. B 99
, 140302(R) (2019).
(
10.1103/PhysRevB.99.140302
) -
Kim, Y. et al. Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene. Nano Lett. 16, 5053–5059 (2016).
(
10.1021/acs.nanolett.6b01906
) / Nano Lett. by Y Kim (2016) -
Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).
(
10.1103/PhysRevLett.117.116804
) / Phys. Rev. Lett. by Y Cao (2016) -
Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).
(
10.1103/PhysRevB.96.075311
) / Phys. Rev. B by NNT Nam (2017) -
Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).
(
10.1038/nnano.2008.58
) / Nat. Nanotechnol. by J-H Chen (2008) -
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
(
10.1038/nnano.2010.172
) / Nat. Nanotechnol. by CR Dean (2010) -
Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).
(
10.1103/PhysRevB.77.115449
) / Phys. Rev. B by EH Hwang (2008) -
Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).
(
10.1103/PhysRevLett.105.256805
) / Phys. Rev. Lett. by DK Efetov (2010) -
Komatsu, K. Interpretation of the specific heat of various graphites at very low temperatures. J. Phys. Chem. Solids 25, 707–712 (1964).
(
10.1016/0022-3697(64)90180-5
) / J. Phys. Chem. Solids by K Komatsu (1964) -
Bloch, F. Zum elektrischen widerstandsgesetz bei tiefen temperaturen. Z. Phys. 59, 208–214 (1930).
(
10.1007/BF01341426
) / Z. Phys. by F Bloch (1930) -
Grüneisen, E. Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur. Ann. Phys. 408, 530–540 (1933).
(
10.1002/andp.19334080504
) / Ann. Phys. by E Grüneisen (1933) -
Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. Observation of a Bloch–Grüneisen regime in two-dimensional electron transport. Phys. Rev. B 41, 1278–1281 (1990).
(
10.1103/PhysRevB.41.1278
) / Phys. Rev. B by HL Stormer (1990) -
Gorkov, L. P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl Acad. Sci. USA 113, 4646–4651 (2016).
(
10.1073/pnas.1604145113
) / Proc. Natl Acad. Sci. USA by LP Gorkov (2016) -
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).
(
10.1103/PhysRev.167.331
) / Phys. Rev. by WL McMillan (1968) -
Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing. Phys. Rev. B 98, 035425 (2018).
(
10.1103/PhysRevB.98.035425
) / Phys. Rev. B by T-F Chung (2018) -
Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).
(
10.1038/s41567-018-0278-6
) / Nat. Phys. by JR Wallbank (2019) -
Bruin, J. A., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).
(
10.1126/science.1227612
) / Science by JA Bruin (2013) -
Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).
(
10.1038/430512a
) / Nature by J Zaanen (2004) - Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Preprint at https://arxiv.org/abs/1901.03710 (2019).
-
Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
(
10.1021/acs.nanolett.5b05263
) / Nano Lett. by K Kim (2016) -
Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).
(
10.1038/nature23893
) / Nature by AA Zibrov (2017) -
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
(
10.1126/science.1244358
) / Science by L Wang (2013)
Dates
Type | When |
---|---|
Created | 6 years ago (Aug. 5, 2019, 12:03 p.m.) |
Deposited | 2 years, 3 months ago (May 20, 2023, 6:13 p.m.) |
Indexed | 3 days, 4 hours ago (Aug. 19, 2025, 6:42 a.m.) |
Issued | 6 years ago (Aug. 5, 2019) |
Published | 6 years ago (Aug. 5, 2019) |
Published Online | 6 years ago (Aug. 5, 2019) |
Published Print | 5 years, 10 months ago (Oct. 1, 2019) |
@article{Polshyn_2019, title={Large linear-in-temperature resistivity in twisted bilayer graphene}, volume={15}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/s41567-019-0596-3}, DOI={10.1038/s41567-019-0596-3}, number={10}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Polshyn, Hryhoriy and Yankowitz, Matthew and Chen, Shaowen and Zhang, Yuxuan and Watanabe, K. and Taniguchi, T. and Dean, Cory R. and Young, Andrea F.}, year={2019}, month=aug, pages={1011–1016} }