Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Claassen, M., Kennes, D. M., Zingl, M., Sentef, M. A., & Rubio, A. (2019). Universal optical control of chiral superconductors and Majorana modes. Nature Physics, 15(8), 766–770.

Authors 5
  1. M. Claassen (first)
  2. D. M. Kennes (additional)
  3. M. Zingl (additional)
  4. M. A. Sentef (additional)
  5. A. Rubio (additional)
References 53 Referenced 58
  1. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000). (10.1103/PhysRevB.61.10267) / Phys. Rev. B by N Read (2000)
  2. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008). (10.1103/PhysRevB.78.195125) / Phys. Rev. B by AP Schnyder (2008)
  3. Kallin, C. & Berlinsky, J. Chiral superconductors. Rep. Prog. Phys. 79, 054502 (2016). (10.1088/0034-4885/79/5/054502) / Rep. Prog. Phys. by C Kallin (2016)
  4. Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015). (10.1103/RevModPhys.87.137) / Rev. Mod. Phys. by SR Elliott (2015)
  5. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013). (10.1146/annurev-conmatphys-030212-184337) / Annu. Rev. Condens. Matter Phys. by CWJ Beenakker (2013)
  6. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012). (10.1088/0034-4885/75/7/076501) / Rep. Prog. Phys. by J Alicea (2012)
  7. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2007). (10.1103/RevModPhys.80.1083) / Rev. Mod. Phys. by C Nayak (2007)
  8. Black-Schaffer, A. M. & Doniach, S. Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75, 134512 (2006). (10.1103/PhysRevB.75.134512) / Phys. Rev. B by AM Black-Schaffer (2006)
  9. Nandkishore, R., Levitov, L. & Chubukov, A. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2011). (10.1038/nphys2208) / Nat. Phys. by R Nandkishore (2011)
  10. Kiesel, M., Platt, C., Hanke, W., Abanin, D. A. & Thomale, R. Competing many-body instabilities and unconventional superconductivity in graphene. Phys. Rev. B 86, 020507 (2011). (10.1103/PhysRevB.86.020507) / Phys. Rev. B by M Kiesel (2011)
  11. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  12. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). (10.1073/pnas.1108174108) / Proc. Natl Acad. Sci. USA by R Bistritzer (2011)
  13. Liu, C. C., Zhang, L. D., Chen, W. Q. & Yang, F. Chiral spin density wave and d + id superconductivity in the magic-angle twisted bilayer-graphene.Phys. Rev. Lett. 121, 217001 (2018). (10.1103/PhysRevLett.121.217001) / Phys. Rev. Lett. by CC Liu (2018)
  14. Kennes, D. M., Lischner, J. & Karrasch, C. Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407 (2018). (10.1103/PhysRevB.98.241407) / Phys. Rev. B by DM Kennes (2018)
  15. Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998). (10.1038/29038) / Nature by GM Luke (1998)
  16. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003). (10.1103/RevModPhys.75.657) / Rev. Mod. Phys. by AP Mackenzie (2003)
  17. Luke, G. M. et al. Muon spin relaxation in UPt3. Phys. Rev. Lett. 71, 1466–1469 (1993). (10.1103/PhysRevLett.71.1466) / Phys. Rev. Lett. by GM Luke (1993)
  18. Joynt, R. & Taillefer, L. The superconducting phases of UPt3. Rev. Mod. Phys. 74, 235–294 (2002). (10.1103/RevModPhys.74.235) / Rev. Mod. Phys. by R Joynt (2002)
  19. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016). (10.1038/nature16522) / Nature by M Mitrano (2016)
  20. Sentef, M. A., Tokuno, A., Georges, A. & Kollath, C. Theory of laser-controlled competing superconducting and charge orders. Phys. Rev. Lett. 118, 087002 (2016). (10.1103/PhysRevLett.118.087002) / Phys. Rev. Lett. by MA Sentef (2016)
  21. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991). (10.1103/RevModPhys.63.239) / Rev. Mod. Phys. by M Sigrist (1991)
  22. Hicks, C. W. et al. Strong increase of T c of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014). (10.1126/science.1248292) / Science by CW Hicks (2014)
  23. Sigrist, M. Ehrenfest relations for ultrasound absorption in Sr2RuO4. Prog. Theor. Phys. 107, 917–925 (2002). (10.1143/PTP.107.917) / Prog. Theor. Phys. by M Sigrist (2002)
  24. Dehghani, H. & Mitra, A. Dynamical generation of superconducting order of different symmetries in hexagonal lattices. Phys. Rev. B 96, 195110 (2017). (10.1103/PhysRevB.96.195110) / Phys. Rev. B by H Dehghani (2017)
  25. Agterberg, D. F. Vortex lattice structure of Sr2RuO4. Phys. Rev. Lett. 80, 5184–5187 (1998). (10.1103/PhysRevLett.80.5184) / Phys. Rev. Lett. by DF Agterberg (1998)
  26. Scaffidi, T., Romers, J. C. & Simon, S. H. Pairing symmetry and dominant band in Sr2RuO4. Phys. Rev. B 89, 220510 (2013). (10.1103/PhysRevB.89.220510) / Phys. Rev. B by T Scaffidi (2013)
  27. Dunhap, D. H. & Kenkre, V. M. Dynamic localization of a charged particle moving under the influence of an electric field. Phys. Rev. B 34, 3625–3633 (1986). (10.1103/PhysRevB.34.3625) / Phys. Rev. B by DH Dunhap (1986)
  28. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009). (10.1103/PhysRevB.79.081406) / Phys. Rev. B by T Oka (2009)
  29. Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018). (10.1073/pnas.1810003115) / Proc. Natl Acad. Sci. USA by B Lian (2018)
  30. Nayak, C. Density wave states of non-zero angular momentum. Phys. Rev. B 62, 4880–4889 (2000). (10.1103/PhysRevB.62.4880) / Phys. Rev. B by C Nayak (2000)
  31. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011). (10.1038/nphys1926) / Nat. Phys. by NH Lindner (2011)
  32. Yuan, N. F. Q. & Fu, L. Model for metal–insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018). (10.1103/PhysRevB.98.045103) / Phys. Rev. B by NFQ Yuan (2018)
  33. Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018). (10.1103/PhysRevLett.121.087001) / Phys. Rev. Lett. by C Xu (2018)
  34. Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X. Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018). (10.1103/PhysRevB.98.075154) / Phys. Rev. B by JF Dodaro (2018)
  35. Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting fermions on twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453 (2018). (10.1103/PhysRevB.97.235453) / Phys. Rev. B by H Guo (2018)
  36. Huang, T., Zhang, L. & Ma, T. Antiferromagnetically ordered Mott insulator and d + id superconductivity in twisted bilayer graphene: a quantum Monte Carlo study. Sci. Bull. 64, 310–314 (2019). (10.1016/j.scib.2019.01.026) / Sci. Bull. by T Huang (2019)
  37. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). / Phys. Rev. X by HC Po (2018)
  38. Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018). / Phys. Rev. X by H Isobe (2018)
  39. Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization not Mott insulation. Nano Lett. 18, 6175–6180 (2018). (10.1021/acs.nanolett.8b02033) / Nano Lett. by B Padhi (2018)
  40. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon driven superconductor. Preprint at https://arxiv.org/abs/1807.04382 (2018). (10.1103/PhysRevLett.122.257002)
  41. Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001). (10.1103/PhysRevB.65.035109) / Phys. Rev. B by I Souza (2001)
  42. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat Wien, 2001).
  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  44. Kuneš, J. et al. Wien2wannier: from linearized augmented plane waves to maximally localized wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010). (10.1016/j.cpc.2010.08.005) / Comput. Phys. Commun. by J Kuneš (2010)
  45. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008). (10.1016/j.cpc.2007.11.016) / Comput. Phys. Commun. by AA Mostofi (2008)
  46. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996). (10.1103/RevModPhys.68.13) / Rev. Mod. Phys. by A Georges (1996)
  47. Parcollet, O. et al. Triqs: A toolbox for research on interacting quantum systems. Comput. Phys. Commun. 196, 398–415 (2015). (10.1016/j.cpc.2015.04.023) / Comput. Phys. Commun. by O Parcollet (2015)
  48. Seth, P., Krivenko, I., Ferrero, M. & Parcollet, O. Triqs/cthyb: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems. Comput. Phys. Commun. 200, 274–284 (2016). (10.1016/j.cpc.2015.10.023) / Comput. Phys. Commun. by P Seth (2016)
  49. Aichhorn, M. et al. Triqs/dfttools: A triqs application for ab initio calculations of correlated materials. Comp. Phys. Comm. 204, 200–208 (2016). (10.1016/j.cpc.2016.03.014) / Comp. Phys. Comm. by M Aichhorn (2016)
  50. Zhang, G., Gorelov, E., Sarvestani, E. & Pavarini, E. Fermi surface of Sr2RuO4 : spin–orbit and anisotropic Coulomb interaction effects.Phys. Rev. Lett. 116, 106402 (2016). (10.1103/PhysRevLett.116.106402) / Phys. Rev. Lett. by G Zhang (2016)
  51. Kim, M., Mravlje, J., Ferrero, M., Parcollet, O. & Georges, A. Spin–orbit coupling and electronic correlations in S2RuO4. Phys. Rev. Lett. 120, 126401 (2018). (10.1103/PhysRevLett.120.126401) / Phys. Rev. Lett. by M Kim (2018)
  52. Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin–orbit coupling and dominantly local self-energies. Preprint at https://arxiv.org/abs/1812.06531 (2018). (10.1103/PhysRevX.9.021048)
  53. Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. npj Quantum Mater. 2, 40 (2017). (10.1038/s41535-017-0045-4) / npj Quantum Mater. by AP Mackenzie (2017)
Dates
Type When
Created 6 years, 3 months ago (May 27, 2019, 12:04 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6:12 p.m.)
Indexed 1 week, 5 days ago (Aug. 21, 2025, 2:10 p.m.)
Issued 6 years, 3 months ago (May 27, 2019)
Published 6 years, 3 months ago (May 27, 2019)
Published Online 6 years, 3 months ago (May 27, 2019)
Published Print 6 years, 1 month ago (Aug. 1, 2019)
Funders 0

None

@article{Claassen_2019, title={Universal optical control of chiral superconductors and Majorana modes}, volume={15}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/s41567-019-0532-6}, DOI={10.1038/s41567-019-0532-6}, number={8}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Claassen, M. and Kennes, D. M. and Zingl, M. and Sentef, M. A. and Rubio, A.}, year={2019}, month=may, pages={766–770} }