Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Han, W., Zheng, X., Yang, K., Tsang, C. S., Zheng, F., Wong, L. W., Lai, K. H., Yang, T., Wei, Q., Li, M., Io, W. F., Guo, F., Cai, Y., Wang, N., Hao, J., Lau, S. P., Lee, C.-S., Ly, T. H., Yang, M., & Zhao, J. (2022). Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nature Nanotechnology, 18(1), 55–63.

Authors 20
  1. Wei Han (first)
  2. Xiaodong Zheng (additional)
  3. Ke Yang (additional)
  4. Chi Shing Tsang (additional)
  5. Fangyuan Zheng (additional)
  6. Lok Wing Wong (additional)
  7. Ka Hei Lai (additional)
  8. Tiefeng Yang (additional)
  9. Qi Wei (additional)
  10. Mingjie Li (additional)
  11. Weng Fu Io (additional)
  12. Feng Guo (additional)
  13. Yuan Cai (additional)
  14. Ning Wang (additional)
  15. Jianhua Hao (additional)
  16. Shu Ping Lau (additional)
  17. Chun-Sing Lee (additional)
  18. Thuc Hue Ly (additional)
  19. Ming Yang (additional)
  20. Jiong Zhao (additional)
References 53 Referenced 132
  1. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019). (10.1038/s41928-019-0338-7) / Nat. Electron. by M Si (2019)
  2. Wu, J. B. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020). (10.1038/s41928-020-0441-9) / Nat. Electron. by JB Wu (2020)
  3. Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021). (10.1038/s41467-020-20257-2) / Nat. Commun. by S Wang (2021)
  4. Wang, X. W. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021). (10.1038/s41467-021-21320-2) / Nat. Commun. by XW Wang (2021)
  5. Dai, M. et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett. 19, 5410–5416 (2019). (10.1021/acs.nanolett.9b01907) / Nano Lett. by M Dai (2019)
  6. Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). (10.1038/s41586-020-2861-0) / Nature by GM Marega (2020)
  7. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018). (10.1038/s41928-018-0092-2) / Nat. Electron. by D Ielmini (2018)
  8. Khan, A. I. et al. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020). (10.1038/s41928-020-00492-7) / Nat. Electron. by AI Khan (2020)
  9. Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021). (10.1126/science.abg3161) / Science by L Tong (2021)
  10. Ding, W. J. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). (10.1038/ncomms14956) / Nat. Commun. by WJ Ding (2017)
  11. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017). (10.1021/acs.nanolett.7b02198) / Nano Lett. by Y Zhou (2017)
  12. Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018). (10.1002/adfm.201803738) / Adv. Funct. Mater. by F Xue (2018)
  13. Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018). (10.1021/acs.nanolett.7b04852) / Nano Lett. by C Cui (2018)
  14. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  15. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). (10.1038/ncomms12357) / Nat. Commun. by F Liu (2016)
  16. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019). (10.1038/s41467-019-09669-x) / Nat. Commun. by S Yuan (2019)
  17. Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019). (10.1021/acs.nanolett.9b01419) / Nano Lett. by Y Bao (2019)
  18. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018). (10.1126/sciadv.aar7720) / Sci. Adv. by C Zheng (2018)
  19. Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020). (10.1103/PhysRevLett.125.047601) / Phys. Rev. Lett. by C Xu (2020)
  20. Chen, Z. et al. Atomic imaging of electrically switchable striped domains in β′-In2Se3. Adv. Sci. 8, 2100713 (2021). (10.1002/advs.202100713) / Adv. Sci. by Z Chen (2021)
  21. Zhang, Z. M. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit. Adv. Mater. 33, 202106951 (2021). / Adv. Mater. by ZM Zhang (2021)
  22. Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β’-In2Se3. Nat. Commun. 12, 3665 (2021). (10.1038/s41467-021-23882-7) / Nat. Commun. by C Xu (2021)
  23. Collins, J. L. et al. Electronic band structure of in-plane ferroelectric van der Waals β′-In2Se3. ACS Appl. Electron. Mater 2, 213–219 (2020). (10.1021/acsaelm.9b00699) / ACS Appl. Electron. Mater by JL Collins (2020)
  24. Han, G. et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014). (10.1002/smll.201400104) / Small by G Han (2014)
  25. Tao, X. & Gu, Y. Crystalline−crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13, 3501–3505 (2013). (10.1021/nl400888p) / Nano Lett. by X Tao (2013)
  26. Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143 (2019). (10.1021/acs.chemmater.9b03499) / Chem. Mater. by L Liu (2019)
  27. Balakrishnan, N. et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Mater. 3, 025030 (2016). (10.1088/2053-1583/3/2/025030) / 2D Mater. by N Balakrishnan (2016)
  28. Rashid, R. et al. Shape-control growth of 2D-In2Se3 with out-of-plane ferroelectricity by chemical vapor deposition. Nanoscale 12, 20189–20201 (2020). (10.1039/C9NR10207H) / Nanoscale by R Rashid (2020)
  29. Van Landuyt, J. et al. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Phys. Stat. Sol. (a) 3, 299–314 (1975). (10.1002/pssa.2210300131) / Phys. Stat. Sol. (a) by J Van Landuyt (1975)
  30. Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013). (10.1021/ja406351u) / J. Am. Chem. Soc. by M Lin (2013)
  31. Balakrishnan, N. et al. Epitaxial growth of-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Mater. 5, 035026 (2018). (10.1088/2053-1583/aac479) / 2D Mater. by N Balakrishnan (2018)
  32. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). (10.1038/s41565-021-00963-8) / Nat. Nanotechnol. by T Li (2021)
  33. Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 4, 4646–4653 (2020). (10.1021/acsnano.0c00296) / ACS Nano by L Tang (2020)
  34. Lakin, N. M. et al. The identification of In2O in the gas phase by high resolution electronic spectroscopy. J. Chem. Phys. 107, 4439–4442 (1997). (10.1063/1.474786) / J. Chem. Phys. by NM Lakin (1997)
  35. Ly, T. H. et al. Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11, 7534–7541 (2017). (10.1021/acsnano.7b04287) / ACS Nano by TH Ly (2017)
  36. Huang, L. et al. Mechanical origin of martensite-like structures in two-dimensional ReS2. Commun. Mater. 2, 87 (2021). (10.1038/s43246-021-00190-7) / Commun. Mater. by L Huang (2021)
  37. Vilaplana, R. et al. Experimental and theoretical studies on α‑In2Se3 at high pressure. Inorg. Chem. 57, 8241–8252 (2018). (10.1021/acs.inorgchem.8b00778) / Inorg. Chem. by R Vilaplana (2018)
  38. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021). (10.1038/s41578-021-00304-0) / Nat. Rev. Mater. by W Li (2021)
  39. Yang, S. X. et al. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021). (10.1002/inf2.12177) / InfoMat by SX Yang (2021)
  40. Zhang, X. et al. Epitaxial growth of few-layer β-In2Se3 thin films by metalorganic chemical vapor deposition. J. Cryst. Growth 533, 125471 (2020). (10.1016/j.jcrysgro.2019.125471) / J. Cryst. Growth by X Zhang (2020)
  41. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). (10.1038/nature14417) / Nature by K Kang (2015)
  42. Xu, X. L. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021). (10.1126/science.abf5825) / Science by XL Xu (2021)
  43. Zhou, J. et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400–6405 (2015). (10.1021/acs.nanolett.5b01590) / Nano Lett. by J Zhou (2015)
  44. Zheng, Z. Q. et al. Self-assembly of the lateral In2Se3/CuInSe2 heterojunction for enhanced photodetection. ACS Appl. Mater. Interfaces 9, 7288–7296 (2017). (10.1021/acsami.6b16323) / ACS Appl. Mater. Interfaces by ZQ Zheng (2017)
  45. Yuan, S. G. et al. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 3, 11979–11986 (2020). (10.1021/acsanm.0c02513) / ACS Appl. Nano Mater. by SG Yuan (2020)
  46. Igo, J. et al. Photodefined in-plane heterostructures in two-dimensional In2Se3 nanolayers for ultrathin photodiodes. ACS Appl. Nano Mater. 2, 6774–6782 (2019). (10.1021/acsanm.9b01745) / ACS Appl. Nano Mater. by J Igo (2019)
  47. Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018). (10.1016/j.ultramic.2018.06.003) / Ultramicroscopy by J Barthel (2018)
  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  51. Dion, M. et al. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). (10.1103/PhysRevLett.92.246401) / Phys. Rev. Lett. by M Dion (2004)
  52. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009). (10.1103/PhysRevLett.103.096102) / Phys. Rev. Lett. by G Román-Pérez (2009)
  53. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011). (10.1103/PhysRevB.83.195131) / Phys. Rev. B by J Klimeš (2011)
Dates
Type When
Created 2 years, 8 months ago (Dec. 12, 2022, 12:06 p.m.)
Deposited 2 years, 6 months ago (Jan. 26, 2023, 12:06 p.m.)
Indexed 21 hours, 54 minutes ago (Aug. 20, 2025, 9 a.m.)
Issued 2 years, 8 months ago (Dec. 12, 2022)
Published 2 years, 8 months ago (Dec. 12, 2022)
Published Online 2 years, 8 months ago (Dec. 12, 2022)
Published Print 2 years, 7 months ago (Jan. 1, 2023)
Funders 0

None

@article{Han_2022, title={Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction}, volume={18}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-022-01257-3}, DOI={10.1038/s41565-022-01257-3}, number={1}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Han, Wei and Zheng, Xiaodong and Yang, Ke and Tsang, Chi Shing and Zheng, Fangyuan and Wong, Lok Wing and Lai, Ka Hei and Yang, Tiefeng and Wei, Qi and Li, Mingjie and Io, Weng Fu and Guo, Feng and Cai, Yuan and Wang, Ning and Hao, Jianhua and Lau, Shu Ping and Lee, Chun-Sing and Ly, Thuc Hue and Yang, Ming and Zhao, Jiong}, year={2022}, month=dec, pages={55–63} }