Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Abstract

AbstractTwisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarization arranged into a twist-controlled network. The last can be moved by applying out-of-plane electrical fields, as visualized in situ using channelling contrast electron microscopy. The observed interfacial charge transfer, movement of domain walls and their bending rigidity agree well with theoretical calculations. Furthermore, we demonstrate proof-of-principle field-effect transistors, where the channel resistance exhibits a pronounced hysteresis governed by pinning of ferroelectric domain walls. Our results show a potential avenue towards room temperature electronic and optoelectronic semiconductor devices with built-in ferroelectric memory functions.

Bibliography

Weston, A., Castanon, E. G., Enaldiev, V., Ferreira, F., Bhattacharjee, S., Xu, S., Corte-León, H., Wu, Z., Clark, N., Summerfield, A., Hashimoto, T., Gao, Y., Wang, W., Hamer, M., Read, H., Fumagalli, L., Kretinin, A. V., Haigh, S. J., Kazakova, O., … Gorbachev, R. (2022). Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology, 17(4), 390–395.

Authors 22
  1. Astrid Weston (first)
  2. Eli G. Castanon (additional)
  3. Vladimir Enaldiev (additional)
  4. Fábio Ferreira (additional)
  5. Shubhadeep Bhattacharjee (additional)
  6. Shuigang Xu (additional)
  7. Héctor Corte-León (additional)
  8. Zefei Wu (additional)
  9. Nicholas Clark (additional)
  10. Alex Summerfield (additional)
  11. Teruo Hashimoto (additional)
  12. Yunze Gao (additional)
  13. Wendong Wang (additional)
  14. Matthew Hamer (additional)
  15. Harriet Read (additional)
  16. Laura Fumagalli (additional)
  17. Andrey V. Kretinin (additional)
  18. Sarah J. Haigh (additional)
  19. Olga Kazakova (additional)
  20. A. K. Geim (additional)
  21. Vladimir I. Fal’ko (additional)
  22. Roman Gorbachev (additional)
References 29 Referenced 275
  1. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2016.8 (2016). (10.1038/natrevmats.2016.8)
  2. Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021). (10.1063/5.0037617) / J. Appl. Phys. by T Mikolajick (2021)
  3. Bertolazzi, S. et al. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 31, 1806663 (2019). (10.1002/adma.201806663) / Adv. Mater. by S Bertolazzi (2019)
  4. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  5. Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015). (10.1021/acs.nanolett.5b00491) / Nano Lett. by A Belianinov (2015)
  6. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017). (10.1021/acs.nanolett.7b02198) / Nano Lett. by Y Zhou (2017)
  7. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018). (10.1126/sciadv.aar7720) / Sci. Adv. by C Zheng (2018)
  8. Li, Y., Gong, M. & Zeng, H. Atomically thin In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor. J. Semiconduct. https://doi.org/10.1088/1674-4926/40/6/061002 (2019). (10.1088/1674-4926/40/6/061002) / J. Semiconduct. by Y Li (2019)
  9. Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017). (10.1021/acs.nanolett.7b01248) / Nano Lett. by AP Rooney (2017)
  10. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020). (10.1038/s41565-020-0682-9) / Nat. Nanotechnol. by A Weston (2020)
  11. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020). (10.1021/acsnano.0c00088) / ACS Nano by MR Rosenberger (2020)
  12. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021). (10.1038/s41467-020-20667-2) / Nat. Commun. by CR Woods (2021)
  13. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, eabd3230 (2021). (10.1126/science.abd3230) / Science by K Yasuda (2021)
  14. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, eabe8177 (2021). (10.1126/science.abe8177) / Science by M Vizner Stern (2021)
  15. de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2020). (10.1038/s41467-021-25587-3)
  16. Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020). (10.1021/acs.nanolett.9b05092) / Nano Lett. by H Li (2020)
  17. Ferreira, F. et al. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422– (2021). (10.1038/s41598-021-92710-1) / Sci. Rep. by F Ferreira (2021)
  18. Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0728-z (2020). (10.1038/s41565-020-0728-z) / Nat. Nanotechnol. by J Sung (2020)
  19. Wang, G. et al. Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2017). (10.1103/RevModPhys.90.021001) / Rev. Mod. Phys. by G Wang (2017)
  20. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
  21. Uri, A. et al. Mapping the twist-angle disorder and landau levels in magic-angle graphene. Nature 581, 47–52 (2020). (10.1038/s41586-020-2255-3) / Nature by A Uri (2020)
  22. Wilkinson, A. J. & Hirsch, P. B. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28, 279–308 (1997). (10.1016/S0968-4328(97)00032-2) / Micron by AJ Wilkinson (1997)
  23. Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021). (10.1038/s41563-020-00873-5) / Nat. Mater. by TI Andersen (2021)
  24. Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020). (10.1063/5.0005082) / J. Chem. Phys. by P Giannozzi (2020)
  25. Ahmed, F. et al. Dielectric dispersion and high field response of multilayer hexagonal boron nitride. Adv. Funct. Mater. 28, 1804235 (2018). (10.1002/adfm.201804235) / Adv. Funct. Mater. by F Ahmed (2018)
  26. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018). (10.1038/s41699-018-0050-x)
  27. Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020). (10.1103/PhysRevLett.124.206101) / Phys. Rev. Lett. by VV Enaldiev (2020)
  28. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). (10.1126/science.1235547) / Science by L Britnell (2013)
  29. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). (10.1038/nnano.2015.67) / Nat. Nanotechnol. by M Koperski (2015)
Dates
Type When
Created 3 years, 5 months ago (Feb. 24, 2022, 12:03 p.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 11:32 a.m.)
Indexed 43 minutes ago (Aug. 21, 2025, 6:11 a.m.)
Issued 3 years, 5 months ago (Feb. 24, 2022)
Published 3 years, 5 months ago (Feb. 24, 2022)
Published Online 3 years, 5 months ago (Feb. 24, 2022)
Published Print 3 years, 4 months ago (April 1, 2022)
Funders 0

None

@article{Weston_2022, title={Interfacial ferroelectricity in marginally twisted 2D semiconductors}, volume={17}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-022-01072-w}, DOI={10.1038/s41565-022-01072-w}, number={4}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Weston, Astrid and Castanon, Eli G. and Enaldiev, Vladimir and Ferreira, Fábio and Bhattacharjee, Shubhadeep and Xu, Shuigang and Corte-León, Héctor and Wu, Zefei and Clark, Nicholas and Summerfield, Alex and Hashimoto, Teruo and Gao, Yunze and Wang, Wendong and Hamer, Matthew and Read, Harriet and Fumagalli, Laura and Kretinin, Andrey V. and Haigh, Sarah J. and Kazakova, Olga and Geim, A. K. and Fal’ko, Vladimir I. and Gorbachev, Roman}, year={2022}, month=feb, pages={390–395} }