Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Sung, J., Zhou, Y., Scuri, G., Zólyomi, V., Andersen, T. I., Yoo, H., Wild, D. S., Joe, A. Y., Gelly, R. J., Heo, H., Magorrian, S. J., Bérubé, D., Valdivia, A. M. M., Taniguchi, T., Watanabe, K., Lukin, M. D., Kim, P., Fal’ko, V. I., & Park, H. (2020). Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 15(9), 750–754.

Authors 19
  1. Jiho Sung (first)
  2. You Zhou (additional)
  3. Giovanni Scuri (additional)
  4. Viktor Zólyomi (additional)
  5. Trond I. Andersen (additional)
  6. Hyobin Yoo (additional)
  7. Dominik S. Wild (additional)
  8. Andrew Y. Joe (additional)
  9. Ryan J. Gelly (additional)
  10. Hoseok Heo (additional)
  11. Samuel J. Magorrian (additional)
  12. Damien Bérubé (additional)
  13. Andrés M. Mier Valdivia (additional)
  14. Takashi Taniguchi (additional)
  15. Kenji Watanabe (additional)
  16. Mikhail D. Lukin (additional)
  17. Philip Kim (additional)
  18. Vladimir I. Fal’ko (additional)
  19. Hongkun Park (additional)
References 43 Referenced 151
  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  2. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  3. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). (10.1038/s41586-019-0975-z) / Nature by K Tran (2019)
  4. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). (10.1038/s41586-019-0976-y) / Nature by C Jin (2019)
  5. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). (10.1038/s41586-019-0986-9) / Nature by EM Alexeev (2019)
  6. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. https://doi.org/10.1038/s41563-020-0708-6 (2020). (10.1038/s41563-020-0708-6)
  7. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). (10.1038/s41586-020-2085-3) / Nature by Y Tang (2020)
  8. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). (10.1038/s41586-020-2092-4) / Nature by EC Regan (2020)
  9. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). (10.1038/s41586-020-2191-2) / Nature by Y Shimazaki (2020)
  10. Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020). (10.1103/PhysRevLett.124.206101) / Phys. Rev. Lett. by VV Enaldiev (2020)
  11. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0682-9 (2020). (10.1038/s41565-020-0682-9)
  12. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0708-3 (2020). (10.1038/s41565-020-0708-3)
  13. Sushko, A. et al. High resolution imaging of reconstructed domains and moire patterns in functional van der Waals heterostructure devices. Preprint at http://arxiv.org/abs/1912.07446 (2019).
  14. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020). (10.1021/acsnano.0c00088) / ACS Nano by MR Rosenberger (2020)
  15. Toh, R. J., Sofer, Z., Luxa, J., Sedmidubský, D. & Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53, 3054–3057 (2017). (10.1039/C6CC09952A) / Chem. Commun. by RJ Toh (2017)
  16. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). (10.1103/PhysRevLett.118.147401) / Phys. Rev. Lett. by F Wu (2017)
  17. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017). (10.1103/PhysRevLett.119.023603) / Phys. Rev. Lett. by J Perczel (2017)
  18. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020). (10.1038/s41567-020-0845-5) / Nat. Phys. by R Bekenstein (2020)
  19. Byrnes, T., Recher, P. & Yamamoto, Y. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B 81, 205312 (2010). (10.1103/PhysRevB.81.205312) / Phys. Rev. B by T Byrnes (2010)
  20. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). (10.1126/sciadv.1701696) / Sci. Adv. by H Yu (2017)
  21. Wu, F., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018). (10.1103/PhysRevB.97.035306) / Phys. Rev. B by F Wu (2018)
  22. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  23. Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016). (10.1038/ncomms10800) / Nat. Commun. by CR Woods (2016)
  24. Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018). (10.1021/acs.nanolett.7b03667) / Nano Lett. by Z Wang (2018)
  25. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). (10.1126/science.aaw4194) / Science by LA Jauregui (2019)
  26. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018). (10.1103/PhysRevLett.120.037402) / Phys. Rev. Lett. by G Scuri (2018)
  27. Zhou, Y. et al. Controlling excitons in an atomically thin membrane with a mirror. Phys. Rev. Lett. 124, 027401 (2020). (10.1103/PhysRevLett.124.027401) / Phys. Rev. Lett. by Y Zhou (2020)
  28. Horng, J. et al. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 97, 241404 (2018). (10.1103/PhysRevB.97.241404) / Phys. Rev. B by J Horng (2018)
  29. Gerber, I. C. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 99, 035443 (2019). (10.1103/PhysRevB.99.035443) / Phys. Rev. B by IC Gerber (2019)
  30. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). (10.1038/ncomms5966) / Nat. Commun. by K Liu (2014)
  31. Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018). (10.1038/s41567-018-0123-y) / Nat. Phys. by J Kunstmann (2018)
  32. Deilmann, T. & Thygesen, K. S. Interlayer excitons with large optical amplitudes in layered van der Waals materials. Nano Lett. 18, 2984–2989 (2018). (10.1021/acs.nanolett.8b00438) / Nano Lett. by T Deilmann (2018)
  33. Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017). (10.1021/acs.nanolett.7b01304) / Nano Lett. by B Miller (2017)
  34. Daniels, J. M., Machnikowski, P. & Kuhn, T. Excitons in quantum dot molecules: Coulomb coupling, spin-orbit effects, and phonon-induced line broadening. Phys. Rev. B 88, 205307 (2013). (10.1103/PhysRevB.88.205307) / Phys. Rev. B by JM Daniels (2013)
  35. Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019). (10.1103/PhysRevB.99.125424) / Phys. Rev. B by DA Ruiz-Tijerina (2019)
  36. Hubert, C. et al. Attractive dipolar coupling between stacked exciton fluids. Phys. Rev. X 9, 021026 (2019). / Phys. Rev. X by C Hubert (2019)
  37. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018). (10.1126/science.aat6981) / Science by R Ribeiro-Palau (2018)
  38. Sammon, M. & Shklovskii, B. I. Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers. Phys. Rev. B 99, 165403 (2019). (10.1103/PhysRevB.99.165403) / Phys. Rev. B by M Sammon (2019)
  39. Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014). (10.1126/science.1243409) / Science by M Stern (2014)
  40. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). (10.1038/s41586-019-1591-7) / Nature by Z Wang (2019)
  41. Brown, L. et al. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012). (10.1021/nl204547v) / Nano Lett. by L Brown (2012)
  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  43. Bronsema, K. D., De Boer, J. L. & Jellinek, F. On the structure of molybdenum diselenide and disulfide. Z. Anorg. Allg. Chem. 540, 15–17 (1986). (10.1002/zaac.19865400904) / Z. Anorg. Allg. Chem. by KD Bronsema (1986)
Dates
Type When
Created 5 years, 1 month ago (July 13, 2020, 12:04 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6 p.m.)
Indexed 2 days, 14 hours ago (Aug. 31, 2025, 6:36 a.m.)
Issued 5 years, 1 month ago (July 13, 2020)
Published 5 years, 1 month ago (July 13, 2020)
Published Online 5 years, 1 month ago (July 13, 2020)
Published Print 5 years ago (Sept. 1, 2020)
Funders 12
  1. Summer Undergraduate Research Fellowship at Caltech
  2. MEXT | JST | Core Research for Evolutional Science and Technology 10.13039/501100003382 Core Research for Evolutional Science and Technology

    Region: Asia

    gov (Local government)

    Labels3
    1. Core Research for Evolutionary Science and Technology
    2. 進化科学技術のコア研究
    3. CREST
    Awards1
    1. JPMJCR15F3
  3. NSF | Directorate for Mathematical & Physical Sciences | Division of Physics 10.13039/100000166 Division of Physics

    Region: Americas

    gov (National government)

    Labels4
    1. NSF Division of Physics
    2. Physics
    3. PHY
    4. MPS/PHY
    Awards2
    1. PHY-1125846
    2. PHY-1506284
  4. United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research 10.13039/100000181 Air Force Office of Scientific Research

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
    Awards1
    1. FA9550-17-1-0002
  5. United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory 10.13039/100006754 Army Research Laboratory

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. Army Research Laboratory
    2. US Army Research Laboratory
    3. United States Army Research Laboratory
    4. ARL
    Awards1
    1. W911NF1520067
  6. Gordon and Betty Moore Foundation 10.13039/100000936

    Region: Americas

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Moore Foundation
    2. GORDON E. & BETTY I. MOORE FOUNDATION
    3. GORDON E. AND BETTY I. MOORE FOUNDATION
    4. Gordon & Betty Moore Foundation
    5. GBMF
    Awards1
    1. GBMF4543
  7. United States Department of Defense | United States Navy | Office of Naval Research 10.13039/100000006 Office of Naval Research

    Region: Americas

    gov (National government)

    Labels6
    1. U.S. Office of Naval Research
    2. Naval Research
    3. United States Office of Naval Research
    4. U.S. Department of the Navy Office of Naval Research
    5. The Office of Naval Research
    6. ONR
    Awards1
    1. N00014-15-1-2761
  8. Samsung 10.13039/100004358

    Region: Asia

    pri (For-profit companies (industry))

    Labels4
    1. Samsung Electronics
    2. Samsung Electronics Co., Ltd.
    3. Samsung Group
    4. 삼성
  9. Department of Defense Vannevar Bush Faculty Fellowship
  10. RCUK | Engineering and Physical Sciences Research Council 10.13039/501100000266 Engineering and Physical Sciences Research Council

    Region: Europe

    gov (National government)

    Labels4
    1. UKRI Engineering and Physical Sciences Research Council
    2. Engineering and Physical Sciences Research Council - UKRI
    3. Engineering & Physical Sciences Research Council
    4. EPSRC
    Awards1
    1. EP/S019367/1, EP/S030719/1, EP/N010345/1
  11. ERC Synergy Grant Hetero2D, European Graphene Flagship Project, European Quantum Technologies Project 2D-SIPC
  12. Department of Defense Vannevar Bush Faculty Fellowship

@article{Sung_2020, title={Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers}, volume={15}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-020-0728-z}, DOI={10.1038/s41565-020-0728-z}, number={9}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Sung, Jiho and Zhou, You and Scuri, Giovanni and Zólyomi, Viktor and Andersen, Trond I. and Yoo, Hyobin and Wild, Dominik S. and Joe, Andrew Y. and Gelly, Ryan J. and Heo, Hoseok and Magorrian, Samuel J. and Bérubé, Damien and Valdivia, Andrés M. Mier and Taniguchi, Takashi and Watanabe, Kenji and Lukin, Mikhail D. and Kim, Philip and Fal’ko, Vladimir I. and Park, Hongkun}, year={2020}, month=jul, pages={750–754} }