Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
139
Referenced
829
-
Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).
(
10.1109/ISSCC.2014.6757323
) -
Lee, D. U. et al. A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 432–433 (IEEE, 2014).
(
10.1109/ISSCC.2014.6757501
) -
Liu, D. & Park, S. Three-dimensional and 2.5 dimensional interconnection technology: state of the art. J. Electron. Packag 136, 014001 (2014).
(
10.1115/1.4026615
) / Packag by D Liu (2014) -
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).
(
10.1038/nature22994
) / Nature by MM Shulaker (2017) -
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).
(
10.1109/JSSC.1974.1050511
) / IEEE J. Solid-State Circuits by RH Dennard (1974) -
Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006).
(
10.1109/IEDM.2006.346811
) - Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. In Proc. Technical Digest-International Electron Devices Meeting 47–50 (IEEE, 2002).
-
Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
(
10.1038/s41928-018-0092-2
) / Nat. Electron. by D Ielmini (2018) -
Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).
(
10.1038/nature08940
) / Nature by J Borghetti (2010) -
Tang, J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).
(
10.1002/adma.201902761
) / Adv. Mater. by J Tang (2019) -
Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).
(
10.1109/JPROC.2018.2790840
) / Proc. IEEE by S Yu (2018) -
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).
(
10.1109/TED.2015.2439635
) / IEEE Trans. Electron Devices by GW Burr (2015) -
Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 (2017).
(
10.1109/TNNLS.2017.2778940
) / IEEE Trans. Neural Netw. Learn. Syst. by F Merrikh-Bayat (2017) -
Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).
(
10.1038/ncomms14736
) / Nat. Commun. by S Boyn (2017) -
Yoong, H. Y. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computing. Adv. Funct. Mater. 28, 1806037 (2018).
(
10.1002/adfm.201806037
) / Adv. Funct. Mater. by HY Yoong (2018) -
Mizrahi, A. et al. Neural-like computing with populations of superparamagnetic basis functions. Nat. Commun. 9, 1533 (2018).
(
10.1038/s41467-018-03963-w
) / Nat. Commun. by A Mizrahi (2018) - Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). / Nat. Commun. by LQ Zhu (2014)
-
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).
(
10.1038/nmat4856
) / Nat. Mater. by Y van de Burgt (2017) -
Gerasimov, J. Y. et al. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019).
(
10.1002/advs.201801339
) / Adv. Sci. by JY Gerasimov (2019) -
Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).
(
10.1038/nnano.2014.207
) / Nat. Nanotechnol. by G Fiori (2014) -
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
(
10.1038/natrevmats.2016.42
) / Nat. Rev. Mater. by Y Liu (2016) -
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
(
10.1038/natrevmats.2016.52
) / Nat. Rev. Mater. by M Chhowalla (2016) -
Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
(
10.1038/s41565-019-0438-6
) / Nat. Nanotechnol. by M Gibertini (2019) -
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018).
(
10.1038/s41586-018-0336-3
) / Nature by Z Fei (2018) -
Xue, F. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31, 1901300 (2019).
(
10.1002/adma.201901300
) / Adv. Mater. by F Xue (2019) -
Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).
(
10.1038/s41928-019-0338-7
) / Nat. Electron. by M Si (2019) -
Liu, Y., Huang, Y. & Duan, X. van der Waals integration before and beyond two-dimensional materials. Nature 567, 323 (2019).
(
10.1038/s41586-019-1013-x
) / Nature by Y Liu (2019) -
Liu, S. et al. Eliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memory. Adv. Mater. 28, 10623–10629 (2016).
(
10.1002/adma.201603293
) / Adv. Mater. by S Liu (2016) -
Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130 (2018).
(
10.1038/s41928-018-0021-4
) / Nat. Electron. by M Wang (2018) -
Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 1–7 (2019).
(
10.1038/s41467-018-07882-8
) / Nat. Commun. by L Sun (2019) -
Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
(
10.1038/s41928-018-0118-9
) / Nat. Electron. by Y Shi (2018) -
Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).
(
10.1038/s41563-018-0234-y
) / Nat. Mater. by F Zhang (2019) -
Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T Phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2015).
(
10.1021/acs.nanolett.5b04260
) / Nano Lett. by P Cheng (2015) -
Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).
(
10.1038/s41565-019-0462-6
) / Nat. Nanotechnol. by C Liu (2019) -
Ye, P. D. Steep-slope hysteresis-free negative-capacitance 2D transistors. Nat. Nanotechnol. 13, 24–28 (2018).
(
10.1038/s41565-017-0010-1
) / Nat. Nanotechnol. by PD Ye (2018) -
Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett. 18, 3682–3687 (2018).
(
10.1021/acs.nanolett.8b00816
) / Nano Lett. by M Si (2018) -
Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).
(
10.1038/nature15387
) / Nature by D Sarkar (2015) -
Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018).
(
10.1126/science.aap9195
) / Science by C Qiu (2018) -
Wang, L. et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).
(
10.1002/adfm.201901106
) / Adv. Funct. Mater. by L Wang (2019) - Wang, S. et al. A photoelectric-stimulated MoS2 transistor for neuromorphic engineering. Research 2019, 1618798 (2019). / Research by S Wang (2019)
-
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
(
10.1038/s41563-019-0291-x
) / Nat. Mater. by Q Xia (2019) -
Jackson, B. L. et al. Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9, 1–20 (2013).
(
10.1145/2463585.2463588
) / ACM J. Emerg. Technol. Comput. Syst. by BL Jackson (2013) -
Yang, C. S. et al. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29, 1700906 (2017).
(
10.1002/adma.201700906
) / Adv. Mater. by CS Yang (2017) -
Yang, C.-S. et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 28, 1804170 (2018).
(
10.1002/adfm.201804170
) / Adv. Funct. Mater. by C-S Yang (2018) -
Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).
(
10.1002/adma.201800195
) / Adv. Mater. by J Zhu (2018) - Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). / Nat. Commun. by QA Vu (2016)
-
Vu, Q. A. et al. a high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29, 1703363 (2017).
(
10.1002/adma.201703363
) / Adv. Mater. by QA Vu (2017) -
Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).
(
10.1002/adma.201802353
) / Adv. Mater. by MT Sharbati (2018) -
Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).
(
10.1038/s41586-018-0180-5
) / Nature by S Ambrogio (2018) -
Lastras-Montaño, M. A. & Cheng, K.-T. J. N. E. Resistive random-access memory based on ratioed memristors. Nat. Electron. 1, 466–472 (2018).
(
10.1038/s41928-018-0115-z
) / Nat. Electron. by MA Lastras-Montaño (2018) -
Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).
(
10.1103/PhysRevB.83.245213
) / Phys. Rev. B by A Kuc (2011) -
Lee, D. et al. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 28, 9196–9202 (2016).
(
10.1002/adma.201603571
) / Adv. Mater. by D Lee (2016) - Lee, J. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017). / Nat. Commun. by J Lee (2017)
- Xiang, D. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9, 2966 (2018). / Nat. Commun. by D Xiang (2018)
-
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
(
10.1038/s41586-020-2038-x
) / Nature by L Mennel (2020) -
Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–5047 (2018).
(
10.1038/nature25747
) / Nature by VK Sangwan (2018) -
Jadwiszczak, J. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS nano 13, 14262–14273 (2019).
(
10.1021/acsnano.9b07421
) / ACS nano by J Jadwiszczak (2019) -
Huh, W. et al. Synaptic barristor based on phase‐engineered 2D heterostructures. Adv. Mater. 30, 1801447 (2018).
(
10.1002/adma.201801447
) / Adv. Mater. by W Huh (2018) -
Midya, R. et al. Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).
(
10.1002/adma.201604457
) / Adv. Mater. by R Midya (2017) -
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
(
10.1038/nature14441
) / Nature by M Prezioso (2015) -
Sangwan, V. et al. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0647-z (2020).
(
10.1038/s41565-020-0647-z
) -
John, R. A. et al. Synergistic gating of electro‐iono‐photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, 1800220 (2018).
(
10.1002/adma.201800220
) / Adv. Mater. by RA John (2018) -
Yang, J.-T. et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 30, 1801548 (2018).
(
10.1002/adma.201801548
) / Adv. Mater. by J-T Yang (2018) -
Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).
(
10.1038/s41563-018-0248-5
) / Nat. Mater. by X Zhu (2019) -
Wang, S. et al. A MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31, 1806227 (2019).
(
10.1002/adma.201806227
) / Adv. Mater. by S Wang (2019) -
Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T.-L. High performance 2D perovskite/graphene optical synapses as artificial eyes. In Proc. 2018 IEEE International Electron Devices Meeting (IEDM) 38.6.1–38.6.4 (IEEE, 2018).
(
10.1109/IEDM.2018.8614666
) - Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). / Nat. Commun. by S Seo (2018)
-
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. https://doi.org/10.1038/s41928-019-0360-9 (2020).
(
10.1038/s41928-019-0360-9
) -
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
(
10.1126/science.aar4851
) / Science by T Song (2018) -
Lin, X. et al. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).
(
10.1038/s41928-019-0273-7
) / Nat. Electron. by X Lin (2019) -
Yan, R. H., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992).
(
10.1109/16.141237
) / IEEE Trans. Electron Devices by RH Yan (1992) -
Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010).
(
10.1109/JPROC.2010.2070470
) / Proc. IEEE by AC Seabaugh (2010) -
Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).
(
10.1038/nature10679
) / Nature by AM Ionescu (2011) -
Lembke, D., Allain, A. & Kis, A. Thickness-dependent mobility in two-dimensional MoS2 transistors. Nanoscale 7, 6255–6260 (2015).
(
10.1039/C4NR06331G
) / Nanoscale by D Lembke (2015) -
Yu, Z. et al. Realization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).
(
10.1002/adma.201503033
) / Adv. Mater. by Z Yu (2016) -
Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).
(
10.1021/nl301702r
) / Nano Lett. by H Fang (2012) -
Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).
(
10.1021/nl304777e
) / Nano Lett. by W Liu (2013) -
Cui, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 27, 5230–5234 (2015).
(
10.1002/adma.201502222
) / Adv. Mater. by Y Cui (2015) -
Liu, T. et al. Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019).
(
10.1038/s41565-019-0361-x
) / Nat. Nanotechnol. by T Liu (2019) -
Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).
(
10.1103/PhysRevB.80.235402
) / Phys. Rev. B by W Zhu (2009) -
Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).
(
10.1126/sciadv.1500222
) / Sci. Adv. by L Banszerus (2015) -
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
(
10.1038/nnano.2010.89
) / Nat. Nanotechnol. by F Schwierz (2010) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).
(
10.1126/science.aah4698
) / Science by SB Desai (2016) -
Khan, A. I., Yeung, C. W., Chenming, H. & Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proc. 2011 IEEE International Electron Devices Meeting (IEDM) 111.3.1.–11.3.4. (IEEE, 2011).
(
10.1109/IEDM.2011.6131532
) -
Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017).
(
10.1109/IEDM.2017.8268448
) -
Muratore, C. et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl Phys. Lett. 104, 261604 (2014).
(
10.1063/1.4885391
) / Appl Phys. Lett. by C Muratore (2014) - Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016). / Nat. Commun. by J Ji (2016)
-
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
(
10.1126/science.1171245
) / Science by X Li (2009) -
Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
(
10.1039/C8CS00318A
) / Chem. Soc. Rev. by Y Liu (2018) -
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).
(
10.1021/nl303583v
) / Nano Lett. by S Das (2012) -
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
(
10.1038/nmat4080
) / Nat. Mater. by R Kappera (2014) -
Xia, F., Perebeinos, V., Lin, Y.-M., Wu, Y. & Avouris, P. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011).
(
10.1038/nnano.2011.6
) / Nat. Nanotechnol. by F Xia (2011) -
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
(
10.1038/nmat4452
) / Nat. Mater. by A Allain (2015) -
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).
(
10.1038/nnano.2015.70
) / Nat. Nanotechnol. by X Cui (2015) -
Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
(
10.1038/nnano.2014.222
) / Nat. Nanotechnol. by X Duan (2014) -
Lee, G.-H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS nano 9, 7019–7026 (2015).
(
10.1021/acsnano.5b01341
) / ACS nano by G-H Lee (2015) -
Zhao, Y. et al. Passivation of black phosphorus via self‐assembled organic monolayers by van der Waals epitaxy. Adv. Mater. 29, 1603990 (2017).
(
10.1002/adma.201603990
) / Adv. Mater. by Y Zhao (2017) -
He, D. et al. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19, 331–337 (2018).
(
10.1021/acs.nanolett.8b03940
) / Nano Lett. by D He (2018) -
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).
(
10.1126/science.aaj1628
) / Science by C Qiu (2017) -
Li, W. et al. Uniform and ultrathin high-k gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).
(
10.1038/s41928-019-0334-y
) / Nat. Electron. by W Li (2019) -
Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).
(
10.1073/pnas.1205696109
) / Proc. Natl Acad. Sci. USA by R Cheng (2012) - Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017). / Nat. Commun. by T Yang (2017)
-
Xie, L., Jiao, L. & Dai, H. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 132, 14751–14753 (2010).
(
10.1021/ja107071g
) / J. Am. Chem. Soc. by L Xie (2010) -
Ryu, G. H. et al. Striated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 31, 1904251 (2019).
(
10.1002/adma.201904251
) / Adv. Mater. by GH Ryu (2019) -
Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
(
10.1038/nature09405
) / Nature by L Liao (2010) -
Kang, M., Gonugondla, S. K., Patil, A. & Shanbhag, N. R. A multi-functional in-memory inference processor using a standard 6T SRAM array. IEEE J. Solid-State Circuits 53, 642–655 (2018).
(
10.1109/JSSC.2017.2782087
) / IEEE J. Solid-State Circuits by M Kang (2018) -
Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016).
(
10.1109/ISSCC.2016.7418008
) -
Zhang, J., Wang, Z. & Verma, N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid-State Circuits 52, 915–924 (2017).
(
10.1109/JSSC.2016.2642198
) / IEEE J. Solid-State Circuits by J Zhang (2017) -
Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).
(
10.1038/s41586-019-1493-8
) / Nature by G Hills (2019) -
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
(
10.1038/nnano.2014.35
) / Nat. Nanotechnol. by L Li (2014) -
Yang, Z. et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015).
(
10.1002/adma.201500990
) / Adv. Mater. by Z Yang (2015) -
Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistors. ACS Nano 9, 4138–4145 (2015).
(
10.1021/acsnano.5b00289
) / ACS Nano by A Avsar (2015) - Xia, F. et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). / Nat. Commun. by F Xia (2014)
-
Kamalakar, M. et al. Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small 11, 2209–2216 (2015).
(
10.1002/smll.201402900
) / Small by M Kamalakar (2015) -
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
(
10.1021/nn501226z
) / ACS Nano by H Liu (2014) -
Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
(
10.1038/nnano.2017.43
) / Nat. Nanotechnol. by J Wu (2017) -
Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).
(
10.1109/JEDS.2014.2326622
) / IEEE J. Electron Devices Soc. by H Lu (2014) -
Kim, S. et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020).
(
10.1038/s41565-019-0623-7
) / Nat. Nanotechnol. by S Kim (2020) -
Knoll, L. et al. Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Device Lett. 34, 813–815 (2013).
(
10.1109/LED.2013.2258652
) / IEEE Electron Device Lett. by L Knoll (2013) -
Ganjipour, B. et al. Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano 6, 3109–3113 (2012).
(
10.1021/nn204838m
) / ACS Nano by B Ganjipour (2012) -
Gandhi, R. et al. CMOS-compatible vertical-silicon-nanowire Gate-All-Around p-type tunneling FETs with 50-mV/decade subthreshold swing. IEEE Electron Device Lett. 32, 1504–1506 (2011).
(
10.1109/LED.2011.2165331
) / IEEE Electron Device Lett. by R Gandhi (2011) -
Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011).
(
10.1109/IEDM.2011.6131666
) -
Leonelli, D. et al. Performance enhancement in multi-gate tunneling field effect transistors by scaling the Fin-width. Jpn. J. Appl. Phys. 49, 04DC10 (2010).
(
10.1143/JJAP.49.04DC10
) / Jpn. J. Appl. Phys. by D Leonelli (2010) -
Jeon, K. et al. Si tunnel transistors with a novel silicided source and 46 mV/dec swing. In Proc. 2010 Symposium VLSI Technology 121–122 (IEEE, 2010).
(
10.1109/VLSIT.2010.5556195
) - Kim, S. et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. In Proc. 2009 Symposium VLSI Technology 178–179 (IEEE, 2009).
-
Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016).
(
10.1109/IEDM.2016.7838400
) -
Jo, J. & Shin, C. Negative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switching. IEEE Electron Device Lett. 37, 245–248 (2016).
(
10.1109/LED.2016.2523681
) / IEEE Electron Device Lett. by J Jo (2016) -
Wang, T. Y. et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7, 1903480 (2020).
(
10.1002/advs.201903480
) / Adv. Sci. by TY Wang (2020) -
Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).
(
10.1038/nmat4135
) / Nat. Mater. by AA Bessonov (2015) -
Tian, H. et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017).
(
10.1021/acsnano.7b05726
) / ACS Nano by H Tian (2017) -
Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).
(
10.1002/adma.201600166
) / Adv. Mater. by H Tian (2016) -
Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).
(
10.1021/acsnano.7b03033
) / ACS Nano by H Tian (2017) -
Zhong, Y. et al. Selective UV‐gating organic memtransistors with modulable levels of synaptic plasticity. Adv. Electron. Mater. 6, 1900955 (2020).
(
10.1002/aelm.201900955
) / Adv. Electron. Mater. by Y Zhong (2020) -
Liu, Y. H., Zhu, L. Q., Feng, P., Shi, Y. & Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 27, 5599–5604 (2015).
(
10.1002/adma.201502719
) / Adv. Mater. by YH Liu (2015) -
Yang, Y., He, Y., Nie, S., Shi, Y. & Wan, Q. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett. 39, 897–900 (2018).
(
10.1109/LED.2018.2824339
) / IEEE Electron Device Lett. by Y Yang (2018) -
He, Y., Yang, Y., Nie, S., Liu, R. & Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C. 6, 5336–5352 (2018).
(
10.1039/C8TC00530C
) / J. Mater. Chem. C. by Y He (2018) -
Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Electron. Mater. 5, 1800143 (2019).
(
10.1002/aelm.201800143
) / Adv. Electron. Mater. by M Lanza (2019) -
Kuzum, D., Yu, S. & Wong, H. P. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).
(
10.1088/0957-4484/24/38/382001
) / Nanotechnology by D Kuzum (2013)
Dates
Type | When |
---|---|
Created | 5 years, 1 month ago (July 9, 2020, 12:06 p.m.) |
Deposited | 2 years, 3 months ago (May 20, 2023, 6 p.m.) |
Indexed | 55 minutes ago (Sept. 6, 2025, 8:49 a.m.) |
Issued | 5 years, 2 months ago (July 1, 2020) |
Published | 5 years, 2 months ago (July 1, 2020) |
Published Online | 5 years, 1 month ago (July 9, 2020) |
Published Print | 5 years, 2 months ago (July 1, 2020) |
@article{Liu_2020, title={Two-dimensional materials for next-generation computing technologies}, volume={15}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-020-0724-3}, DOI={10.1038/s41565-020-0724-3}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Liu, Chunsen and Chen, Huawei and Wang, Shuiyuan and Liu, Qi and Jiang, Yu-Gang and Zhang, David Wei and Liu, Ming and Zhou, Peng}, year={2020}, month=jul, pages={545–557} }