10.1038/s41565-020-0708-3
Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

McGilly, L. J., Kerelsky, A., Finney, N. R., Shapovalov, K., Shih, E.-M., Ghiotto, A., Zeng, Y., Moore, S. L., Wu, W., Bai, Y., Watanabe, K., Taniguchi, T., Stengel, M., Zhou, L., Hone, J., Zhu, X., Basov, D. N., Dean, C., Dreyer, C. E., & Pasupathy, A. N. (2020). Visualization of moiré superlattices. Nature Nanotechnology, 15(7), 580–584.

Authors 20
  1. Leo J. McGilly (first)
  2. Alexander Kerelsky (additional)
  3. Nathan R. Finney (additional)
  4. Konstantin Shapovalov (additional)
  5. En-Min Shih (additional)
  6. Augusto Ghiotto (additional)
  7. Yihang Zeng (additional)
  8. Samuel L. Moore (additional)
  9. Wenjing Wu (additional)
  10. Yusong Bai (additional)
  11. Kenji Watanabe (additional)
  12. Takashi Taniguchi (additional)
  13. Massimiliano Stengel (additional)
  14. Lin Zhou (additional)
  15. James Hone (additional)
  16. Xiaoyang Zhu (additional)
  17. Dmitri N. Basov (additional)
  18. Cory Dean (additional)
  19. Cyrus E. Dreyer (additional)
  20. Abhay N. Pasupathy (additional)
References 33 Referenced 279
  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  2. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  3. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  4. Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018). (10.1103/PhysRevLett.121.037702) / Phys. Rev. Lett. by S Huang (2018)
  5. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018). (10.1126/science.aau5144) / Science by SS Sunku (2018)
  6. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  7. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  8. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  9. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013). (10.1073/pnas.1309394110) / Proc. Natl Acad. Sci. USA by JS Alden (2013)
  10. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017). (10.1126/sciadv.1601459) / Sci. Adv. by C Zhang (2017)
  11. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019). (10.1038/s41586-019-1431-9) / Nature by A Kerelsky (2019)
  12. Gargiulo, F. & Yazyev, O. V. Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater. 5, 015019 (2017). (10.1088/2053-1583/aa9640) / 2D Mater. by F Gargiulo (2017)
  13. Chandratre, S. & Sharma, P. Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 100, 023114 (2012). (10.1063/1.3676084) / Appl. Phys. Lett. by S Chandratre (2012)
  14. Ong, M. T. & Reed, E. J. Engineered piezoelectricity in graphene. ACS Nano 6, 1387–1394 (2012). (10.1021/nn204198g) / ACS Nano by MT Ong (2012)
  15. da Cunha Rodrigues, G. et al. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 6, 7572 (2015). (10.1038/ncomms8572) / Nat. Commun. by G da Cunha Rodrigues (2015)
  16. Wang, X. et al. Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Mater. 7, e154–e154 (2015). (10.1038/am.2014.124) / NPG Asia Mater. by X Wang (2015)
  17. Van der Donck, M., De Beule, C., Partoens, B., Peeters, F. M. & Van Duppen, B. Piezoelectricity in asymmetrically strained bilayer graphene. 2D Mater. 3, 035015 (2016). (10.1088/2053-1583/3/3/035015) / 2D Mater. by M Van der Donck (2016)
  18. Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015). (10.1021/acsnano.5b02227) / ACS Nano by N Balke (2015)
  19. Kalinin, S. V., Jesse, S., Tselev, A., Baddorf, A. P. & Balke, N. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 5, 5683–5691 (2011). (10.1021/nn2013518) / ACS Nano by SV Kalinin (2011)
  20. Labuda, A. & Proksch, R. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett. 106, 1–5 (2015). (10.1063/1.4922210) / Appl. Phys. Lett. by A Labuda (2015)
  21. Kalinin, S. V. et al. Vector piezoresponse force microscopy. Microsc. Microanal. 12, 206–220 (2006). (10.1017/S1431927606060156) / Microsc. Microanal. by SV Kalinin (2006)
  22. Wang, B., Gu, Y., Zhang, S. & Chen, L.-Q. Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019). (10.1016/j.pmatsci.2019.05.003) / Prog. Mater. Sci. by B Wang (2019)
  23. Dumitrică, T., Landis, C. M. & Yakobson, B. I. Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett. 360, 182–188 (2002). (10.1016/S0009-2614(02)00820-5) / Chem. Phys. Lett. by T Dumitrică (2002)
  24. Kalinin, S. V. & Meunier, V. Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B 77, 033403 (2008). (10.1103/PhysRevB.77.033403) / Phys. Rev. B by SV Kalinin (2008)
  25. Kothari, M., Cha, M. & Kim, K. Critical curvature localization in graphene. I. Quantum-flexoelectricity effect. Proc. R. Soc. A 474, 20180054 (2018). (10.1098/rspa.2018.0054) / Proc. R. Soc. A by M Kothari (2018)
  26. Kundalwal, S. I., Meguid, S. A. & Weng, G. J. Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). (10.1016/j.carbon.2017.03.013) / Carbon by SI Kundalwal (2017)
  27. Dreyer, C. E., Stengel, M. & Vanderbilt, D. Current-density implementation for calculating flexoelectric coefficients. Phys. Rev. B 98, 075153 (2018). (10.1103/PhysRevB.98.075153) / Phys. Rev. B by CE Dreyer (2018)
  28. Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014). (10.1103/PhysRevB.90.201112) / Phys. Rev. B by M Stengel (2014)
  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  32. Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  33. Popov, A. M., Lebedeva, I. V., Knizhnik, A. A., Lozovik, Y. E. & Potapkin, B. V. Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B. 84, 045404 (2011). (10.1103/PhysRevB.84.045404) / Phys. Rev. B. by AM Popov (2011)
Dates
Type When
Created 5 years, 2 months ago (June 22, 2020, 12:03 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 6 p.m.)
Indexed 17 hours, 9 minutes ago (Aug. 31, 2025, 7:26 p.m.)
Issued 5 years, 2 months ago (June 22, 2020)
Published 5 years, 2 months ago (June 22, 2020)
Published Online 5 years, 2 months ago (June 22, 2020)
Published Print 5 years, 2 months ago (July 1, 2020)
Funders 0

None

@article{McGilly_2020, title={Visualization of moiré superlattices}, volume={15}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-020-0708-3}, DOI={10.1038/s41565-020-0708-3}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={McGilly, Leo J. and Kerelsky, Alexander and Finney, Nathan R. and Shapovalov, Konstantin and Shih, En-Min and Ghiotto, Augusto and Zeng, Yihang and Moore, Samuel L. and Wu, Wenjing and Bai, Yusong and Watanabe, Kenji and Taniguchi, Takashi and Stengel, Massimiliano and Zhou, Lin and Hone, James and Zhu, Xiaoyang and Basov, Dmitri N. and Dean, Cory and Dreyer, Cyrus E. and Pasupathy, Abhay N.}, year={2020}, month=jun, pages={580–584} }