Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Finney, N. R., Yankowitz, M., Muraleetharan, L., Watanabe, K., Taniguchi, T., Dean, C. R., & Hone, J. (2019). Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nature Nanotechnology, 14(11), 1029–1034.

Authors 7
  1. Nathan R. Finney (first)
  2. Matthew Yankowitz (additional)
  3. Lithurshanaa Muraleetharan (additional)
  4. K. Watanabe (additional)
  5. T. Taniguchi (additional)
  6. Cory R. Dean (additional)
  7. James Hone (additional)
References 32 Referenced 138
  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  2. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (10.1126/science.aav1910) / Science by M Yankowitz (2019)
  3. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). (10.1038/s41586-019-1393-y) / Nature by G Chen (2019)
  4. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). (10.1126/science.aaw3780) / Science by AL Sharpe (2019)
  5. Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 260, 62–66 (2018). (10.1126/science.aan8458) / Science by EM Spanton (2018)
  6. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  7. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). (10.1038/s41586-019-0975-z) / Nature by K Tran (2019)
  8. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). (10.1038/s41586-019-0976-y) / Nature by C Jin (2019)
  9. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). (10.1038/s41586-019-0986-9) / Nature by EM Alexeev (2019)
  10. Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019). (10.1038/s42254-018-0016-0) / Nat. Rev. Phys. by M Yankowitz (2019)
  11. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012). (10.1038/nphys2272) / Nat. Phys. by M Yankowitz (2012)
  12. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018). (10.1126/science.aat6981) / Science by R Ribeiro-Palau (2018)
  13. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018). (10.1038/s41586-018-0107-1) / Nature by M Yankowitz (2018)
  14. Forsythe, C. et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nanotechnol. 13, 566–571 (2018). (10.1038/s41565-018-0138-7) / Nat. Nanotechnol. by C Forsythe (2018)
  15. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013). (10.1126/science.1237240) / Science by B Hunt (2013)
  16. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (10.1038/nature26154) / Nature by Y Cao (2018)
  17. Wang, L. et al. New generation of moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures. Nano Lett. 19, 2371–2376 (2019). (10.1021/acs.nanolett.8b05061) / Nano Lett. by L Wang (2019)
  18. Chari, T., Riberio-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite–graphene contacts. Nano Lett. 16, 4477–4482 (2016). (10.1021/acs.nanolett.6b01657) / Nano Lett. by T Chari (2016)
  19. Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013). (10.1021/nl402679b) / Nano Lett. by A Eckmann (2013)
  20. Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015). (10.1126/science.aad2102) / Science by L Wang (2015)
  21. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014). (10.1038/nphys2954) / Nat. Phys. by CR Woods (2014)
  22. Chen, Z.-G. et al. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014). (10.1038/ncomms5461) / Nat. Commun. by Z-G Chen (2014)
  23. Wang, E. et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat. Phys. 12, 1111–1115 (2016). (10.1038/nphys3856) / Nat. Phys. by E Wang (2016)
  24. Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013). (10.1103/PhysRevLett.111.266801) / Phys. Rev. Lett. by JCW Song (2013)
  25. Bokdam, M., Amlaki, T., Brocks, G. & Kelly, P. J. Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89, 201404(R) (2014). (10.1103/PhysRevB.89.201404) / Phys. Rev. B by M Bokdam (2014)
  26. Moon, P. & Koshino, M. Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice. Phys. Rev. B 90, 155406 (2014). (10.1103/PhysRevB.90.155406) / Phys. Rev. B by P Moon (2014)
  27. Wallbank, J. R., Mucha-Kruczynski, M., Chen, X. & Fal’ko, V. I. Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures. Ann. Phys. 527, 359–376 (2015). (10.1002/andp.201400204) / Ann. Phys. by JR Wallbank (2015)
  28. Jung, J., DaSilva, A. M., MacDonald, A. H. & Adam, S. Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015). (10.1038/ncomms7308) / Nat. Commun. by J Jung (2015)
  29. San-Jose, P., Gutiérrez-Rubio, A., Sturla, M. & Guinea, F. Spontaneous strains and gap in graphene on boron nitride. Phys. Rev. B 90, 075428 (2014). (10.1103/PhysRevB.90.075428) / Phys. Rev. B by P San-Jose (2014)
  30. Slotman, G. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015). (10.1103/PhysRevLett.115.186801) / Phys. Rev. Lett. by G Slotman (2015)
  31. Jung, J. et al. Moiré band model and band gaps of graphene on hexagonal boron nitride. Phys. Rev. B 96, 085442 (2017). (10.1103/PhysRevB.96.085442) / Phys. Rev. B by J Jung (2017)
  32. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
Dates
Type When
Created 5 years, 11 months ago (Sept. 30, 2019, 3:09 p.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 5:58 p.m.)
Indexed 3 days, 3 hours ago (Aug. 30, 2025, 12:49 p.m.)
Issued 5 years, 11 months ago (Sept. 30, 2019)
Published 5 years, 11 months ago (Sept. 30, 2019)
Published Online 5 years, 11 months ago (Sept. 30, 2019)
Published Print 5 years, 10 months ago (Nov. 1, 2019)
Funders 3
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1420634
  2. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-SC0019443
  3. David and Lucile Packard Foundation 10.13039/100000008

    Region: Americas

    pri (Trusts, charities, foundations (both public and private))

    Labels7
    1. David & Lucile Packard Foundation
    2. The David and Lucile Packard Foundation
    3. Packard Foundation
    4. The Packard Foundation
    5. The David & Lucile Packard Foundation
    6. DLPF
    7. PF

@article{Finney_2019, title={Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices}, volume={14}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-019-0547-2}, DOI={10.1038/s41565-019-0547-2}, number={11}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Finney, Nathan R. and Yankowitz, Matthew and Muraleetharan, Lithurshanaa and Watanabe, K. and Taniguchi, T. and Dean, Cory R. and Hone, James}, year={2019}, month=sep, pages={1029–1034} }