Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Authors
4
- M. Gibertini (first)
- M. Koperski (additional)
- A. F. Morpurgo (additional)
- K. S. Novoselov (additional)
References
128
Referenced
1,481
-
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
(
10.1073/pnas.0502848102
) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005) -
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
(
10.1126/science.aac9439
) / Science by KS Novoselov (2016) -
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
(
10.1038/natrevmats.2016.42
) / Nat. Rev. Mater. by Y Liu (2016) -
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
(
10.1038/natrevmats.2017.33
) / Nat. Rev. Mater. by S Manzeli (2017) -
McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mat. 27, 612–620 (2015).
(
10.1021/cm504242t
) / Chem. Mat. by MA McGuire (2015) - Lebegue, S., Bjorkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013). / Phys. Rev. X by S Lebegue (2013)
-
Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).
(
10.1021/acs.nanolett.6b05229
) / Nano Lett. by G Cheon (2017) -
Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).
(
10.1103/PhysRevLett.118.106101
) / Phys. Rev. Lett. by M Ashton (2017) -
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
(
10.1038/s41565-017-0035-5
) / Nat. Nanotechnol. by N Mounet (2018) -
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by KS Novoselov (2004) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Novoselov, K. S. Nobel Lecture: Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).
(
10.1103/RevModPhys.83.837
) / Rev. Mod. Phys. by KS Novoselov (2011) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Park, J. G. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016).
(
10.1088/0953-8984/28/30/301001
) / J. Phys. Condens. Matter by JG Park (2016) -
de Jongh, L. J. Magnetic Properties of Layered Transition Metal Compounds Vol. 9 (Springer, 1990).
(
10.1007/978-94-009-1860-3
) -
de Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974).
(
10.1080/00018739700101558
) / Adv. Phys. by LJ de Jongh (1974) -
Sachs, B., Wehling, T. O., Novoselov, K. S., Lichtenstein, A. I. & Katsnelson, M. I. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).
(
10.1103/PhysRevB.88.201402
) / Phys. Rev. B by B Sachs (2013) -
Ma, Y. D. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).
(
10.1021/nn204667z
) / ACS Nano by YD Ma (2012) -
Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).
(
10.1103/PhysRevB.91.235425
) / Phys. Rev. B by N Sivadas (2015) -
Liu, J. Y., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).
(
10.1039/C5CP04835D
) / Phys. Chem. Chem. Phys. by JY Liu (2016) -
Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).
(
10.1103/PhysRevB.94.184428
) / Phys. Rev. B by BL Chittari (2016) -
Zhang, W. B., Qu, Q., Zhua, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C. 3, 12457–12468 (2015).
(
10.1039/C5TC02840J
) / J. Mater. Chem. C. by WB Zhang (2015) -
Samarth, N. Magnetism in flatland. Nature 546, 216–218 (2017).
(
10.1038/546216a
) / Nature by N Samarth (2017) -
Peierls, R. On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477–481 (1936).
(
10.1017/S0305004100019174
) / Proc. Camb. Philos. Soc. by R Peierls (1936) -
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in the one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
(
10.1103/PhysRevLett.17.1133
) / Phys. Rev. Lett. by ND Mermin (1966) -
Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–3863 (1967).
(
10.1103/PhysRev.158.383
) / Phys. Rev. by PC Hohenberg (1967) -
Heisenberg, W. On the theory of ferromagnetism. Z. Phys. 49, 619–636 (1928).
(
10.1007/BF01328601
) / Z. Phys. by W Heisenberg (1928) -
Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).
(
10.1103/PhysRev.65.117
) / Phys. Rev. by L Onsager (1944) - Lenz, W. Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920). / Phys. Z. by W Lenz (1920)
-
Ising, E. Report on the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925).
(
10.1007/BF02980577
) / Z. Phys. by E Ising (1925) - Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group 1. Classical systems. Sov. Phys. JETP-USSR 32, 493–500 (1971). / Sov. Phys. JETP-USSR by VL Berezinskii (1971)
-
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C. 6, 1181–1203 (1973).
(
10.1088/0022-3719/6/7/010
) / J. Phys. C. by JM Kosterlitz (1973) -
Kerkmann, D., Wolf, J. A., Pescia, D., Woike, T. & Grunberg, P. Spin-waves and two-dimensional magnetism in the Co-monolayer on Cu(100). Solid State Commun. 72, 963–966 (1989).
(
10.1016/0038-1098(89)90608-X
) / Solid State Commun. by D Kerkmann (1989) -
Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 78 (2008).
(
10.1088/0034-4885/71/5/056501
) / Rep. Prog. Phys. by CAF Vaz (2008) -
Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
(
10.1016/0022-3697(58)90076-3
) / J. Phys. Chem. Solids by I Dzyaloshinsky (1958) -
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
(
10.1103/PhysRev.120.91
) / Phys. Rev. by T Moriya (1960) -
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
(
10.1016/j.aop.2005.10.005
) / Ann. Phys. by A Kitaev (2006) -
Rau, J. G., Lee, E. K. H. & Kee, H. Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).
(
10.1103/PhysRevLett.112.077204
) / Phys. Rev. Lett. by JG Rau (2014) -
Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).
(
10.1038/srep20904
) / Sci. Rep. by CT Kuo (2016) -
Du, K. Z. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).
(
10.1021/acsnano.5b05927
) / ACS Nano by KZ Du (2016) -
Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
(
10.1021/acs.nanolett.6b03052
) / Nano Lett. by JU Lee (2016) - Wang, X. Z. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 9 (2016). / 2D Mater. by XZ Wang (2016)
-
Lin, M. W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C. 4, 315–322 (2016).
(
10.1039/C5TC03463A
) / J. Mater. Chem. C. by MW Lin (2016) -
Brec, R. Review on structural and chemical-properties of transition-metal phosphorus trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).
(
10.1016/0167-2738(86)90055-X
) / Solid State Ion. by R Brec (1986) -
Grasso, V. & Silipigni, L. Low-dimensional materials: the MPX3 family, physical features and potential future applications. Riv. Nuovo Cim. 25, 1–102 (2002).
(
10.1007/BF03548909
) / Riv. Nuovo Cim. by V Grasso (2002) -
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
(
10.1038/nature22391
) / Nature by B Huang (2017) -
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
(
10.1038/nature22060
) / Nature by C Gong (2017) -
Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
(
10.1038/s41586-018-0631-z
) / Nature by KS Burch (2018) -
Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).
(
10.1038/s41565-018-0063-9
) / Nat. Nanotechnol. by M Bonilla (2018) -
Liu, S. S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 1–7 (2017).
(
10.1038/s41699-017-0006-6
) / npj 2D Mater. Appl. by SS Liu (2017) -
O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).
(
10.1021/acs.nanolett.8b00683
) / Nano Lett. by DJ O’Hara (2018) -
Lado, J. L. & Fernandez-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).
(
10.1088/2053-1583/aa75ed
) / 2D Mater. by JL Lado (2017) -
Liu, J., Shi, M. C., Lu, J. W. & Anantram, M. P. Analysis of electrical-field-dependent Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys. Rev. B 97, 054416 (2018).
(
10.1103/PhysRevB.97.054416
) / Phys. Rev. B by J Liu (2018) -
Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).
(
10.1038/s41563-018-0149-7
) / Nat. Mater. by Z Fei (2018) -
Fisher, M. E. & Barber, M. N. Scaling theory for finite-size effects in critical region. Phys. Rev. Lett. 28, 1516–1519 (1972).
(
10.1103/PhysRevLett.28.1516
) / Phys. Rev. Lett. by ME Fisher (1972) -
Ritchie, D. S. & Fisher, M. E. Finite-size and surface effects in Heisenberg films. Phys. Rev. B 7, 480–494 (1973).
(
10.1103/PhysRevB.7.480
) / Phys. Rev. B by DS Ritchie (1973) -
Zhang, R. J. & Willis, R. F. Thickness-dependent Curie temperatures of ultrathin magnetic films: effect of the range of spin–spin interactions. Phys. Rev. Lett. 86, 2665–2668 (2001).
(
10.1103/PhysRevLett.86.2665
) / Phys. Rev. Lett. by RJ Zhang (2001) -
Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
(
10.1038/s41586-018-0626-9
) / Nature by Y Deng (2018) -
Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).
(
10.1038/s41467-018-04018-w
) / Nat. Commun. by C Tan (2018) -
Stoner, E. C. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Philos. Mag. 15, 1018–1034 (1933).
(
10.1080/14786443309462241
) / Philos. Mag. by EC Stoner (1933) -
Wang, H., Eyert, V. & Schwingenschlogl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Cond. Matter 23, 116003 (2011).
(
10.1088/0953-8984/23/11/116003
) / J. Phys. Cond. Matter by H Wang (2011) -
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
(
10.1126/sciadv.1603113
) / Sci. Adv. by D Zhong (2017) -
McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).
(
10.3390/cryst7050121
) / Crystals by MA McGuire (2017) -
Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).
(
10.1063/1.1714194
) / J. Appl. Phys. by JF Dillon (1965) -
Dillon, J. F. & Remeika, J. P. Diffraction of light by domain structure in ferromagnetic CrBr3. J. Appl. Phys. 34, 637–640 (1963).
(
10.1063/1.1729321
) / J. Appl. Phys. by JF Dillon (1963) -
Dillon, J. F. Ferromagnetic resonance in CrBr3. J. Appl. Phys. 33, 1191 (1962).
(
10.1063/1.1728652
) / J. Appl. Phys. by JF Dillon (1962) - Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1–11 eV. Bull. Am. Phys. Soc. II 13 (1968).
-
Pollini, I. & Spinolo, G. Intrinsic optical properties of CrCl3. Phys. Status Solidi 41, 691–701 (1970).
(
10.1002/pssb.19700410224
) / Phys. Status Solidi by I Pollini (1970) -
Bermudez, V. M. & McClure, D. S. Spectroscopic studies of the two-dimensional magnetic insulators chromium trichloride and chromium tribromide—II. J. Phys. Chem. Solids 40, 149–173 (1979).
(
10.1016/0022-3697(79)90031-3
) / J. Phys. Chem. Solids by VM Bermudez (1979) -
Nosenzo, L., Samoggia, G. & Pollini, I. Effect of magnetic ordering on the optical properties of transition-metal halides: NiCl2, NiBr2, CrCl3, and CrBr3. Phys. Rev. B 29, 3607–3616 (1984).
(
10.1103/PhysRevB.29.3607
) / Phys. Rev. B by L Nosenzo (1984) -
Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).
(
10.1038/s41467-018-04953-8
) / Nat. Commun. by Z Wang (2018) -
Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Preprint at https://arxiv.org/pdf/1809.01388.pdf (2018).
(
10.1103/PhysRevMaterials.3.031001
) -
Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Preprint at https://arxiv.org/abs/1806.09274 (2018).
(
10.1103/PhysRevB.99.144401
) -
Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Preprint at https://arxiv.org/abs/1807.00357 (2018).
(
10.1016/j.ssc.2019.113662
) -
Sivadas, N., Okamoto, S., Xu, X. D., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).
(
10.1021/acs.nanolett.8b03321
) / Nano Lett. by N Sivadas (2018) -
Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single spin microscopy. Preprint at https://arxiv.org/abs/1902.01406 (2019).
(
10.1126/science.aav6926
) -
Wang, Y. H. et al. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2. Phys. Rev. B 96, 134428 (2017).
(
10.1103/PhysRevB.96.134428
) / Phys. Rev. B by YH Wang (2017) -
Yi, J. Y. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2017).
(
10.1088/2053-1583/4/1/011005
) / 2D Mater. by JY Yi (2017) -
May, A. F., Calder, S., Cantoni, C., Cao, H. B. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Phys. Rev. B 93, 014411 (2016).
(
10.1103/PhysRevB.93.014411
) / Phys. Rev. B by AF May (2016) -
Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).
(
10.1038/nnano.2015.22
) / Nat. Nanotechnol. by F Matsukura (2015) -
Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).
(
10.1126/science.1136629
) / Science by M Weisheit (2007) -
Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).
(
10.1038/nnano.2008.406
) / Nat. Nanotechnol. by T Maruyama (2009) -
Wang, W. G., Li, M. G., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).
(
10.1038/nmat3171
) / Nat. Mater. by WG Wang (2012) -
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).
(
10.1038/35050040
) / Nature by H Ohno (2000) -
Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).
(
10.1103/PhysRevLett.107.217202
) / Phys. Rev. Lett. by JT Heron (2011) -
Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).
(
10.1038/nmat2803
) / Nat. Mater. by SM Wu (2010) -
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
(
10.1038/s41565-018-0121-3
) / Nat. Nanotechnol. by B Huang (2018) -
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).
(
10.1038/s41565-018-0135-x
) / Nat. Nanotechnol. by S Jiang (2018) -
Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).
(
10.1103/PhysRevLett.117.267203
) / Phys. Rev. Lett. by N Sivadas (2016) -
Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).
(
10.1021/acs.nanolett.8b01278
) / Nano Lett. by Z Wang (2018) -
Vdovin, E. E. et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys. Rev. Lett. 116, 186603 (2016).
(
10.1103/PhysRevLett.116.186603
) / Phys. Rev. Lett. by EE Vdovin (2016) -
Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).
(
10.1038/s41928-018-0087-z
) / Nat. Electron. by D Ghazaryan (2018) -
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, eaar3617 (2018).
(
10.1126/science.aar3617
) / Science by DR Klein (2018) -
Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).
(
10.1021/acs.nanolett.8b01552
) / Nano Lett. by HH Kim (2018) -
Song, T. C. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
(
10.1126/science.aar4851
) / Science by TC Song (2018) -
Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin transistor built on 2D van der Waals heterostructures. Preprint at https://arxiv.org/abs/1807.04898 (2018).
(
10.1038/s41928-019-0232-3
) -
Song, T. C. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).
(
10.1021/acs.nanolett.8b04160
) / Nano Lett. by TC Song (2019) -
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
(
10.1103/PhysRevLett.61.2015
) / Phys. Rev. Lett. by FDM Haldane (1988) -
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
(
10.1038/nature08917
) / Nature by L Balents (2010) -
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
(
10.1126/science.1234414
) / Science by CZ Chang (2013) -
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
(
10.1038/nmat4604
) / Nat. Mater. by A Banerjee (2016) -
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
(
10.1038/nnano.2013.29
) / Nat. Nanotechnol. by A Fert (2013) -
Mayorga-Martinez, C. C. et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 9, 12563–12573 (2017).
(
10.1021/acsami.6b16553
) / ACS Appl. Mater. Interfaces by CC Mayorga-Martinez (2017) -
Wildes, A. R., Simonet, V., Ressouche, E., Ballou, R. & McIntyre, G. J. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J. Phys. Condens. Matter 29, 455801 (2017).
(
10.1088/1361-648X/aa8a43
) / J. Phys. Condens. Matter by AR Wildes (2017) -
Kinyanjui, M. K., Koester, J., Boucher, F., Wildes, A. & Kaiser, U. Spectroscopic properties of a freestanding MnPS3 single layer. Phys. Rev. B 98, 035417 (2018).
(
10.1103/PhysRevB.98.035417
) / Phys. Rev. B by MK Kinyanjui (2018) -
Long, G. et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11, 11330–11336 (2017).
(
10.1021/acsnano.7b05856
) / ACS Nano by G Long (2017) -
Gao, Y. et al. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors. Nanotechnology 29, 244001 (2018).
(
10.1088/1361-6528/aab9d2
) / Nanotechnology by Y Gao (2018) -
Abe, R. Some remarks on perturbation theory and phase transition with an application to anisotropic Ising model. Prog. Theor. Phys. 44, 339–347 (1970).
(
10.1143/PTP.44.339
) / Prog. Theor. Phys. by R Abe (1970) -
Hikami, S. & Tsuneto, T. Phase-transition of quasi-two dimensional planar system. Prog. Theor. Phys. 63, 387–401 (1980).
(
10.1143/PTP.63.387
) / Prog. Theor. Phys. by S Hikami (1980) -
Irkhin, V. Y., Katanin, A. A. & Katsnelson, M. I. Self-consistent spin-wave theory of layered Heisenberg magnets. Phys. Rev. B 60, 1082–1099 (1999).
(
10.1103/PhysRevB.60.1082
) / Phys. Rev. B by VY Irkhin (1999) -
Yasuda, C. et al. Neel temperature of quasi-low-dimensional Heisenberg antiferromagnets. Phys. Rev. Lett. 94, 217201 (2005).
(
10.1103/PhysRevLett.94.217201
) / Phys. Rev. Lett. by C Yasuda (2005) -
Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Théor. Appl. 6, 661–690 (1907).
(
10.1051/jphystap:019070060066100
) / J. Phys. Théor. Appl. by P Weiss (1907) -
Stanley, H. E. Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999).
(
10.1103/RevModPhys.71.S358
) / Rev. Mod. Phys. by HE Stanley (1999) -
Pelissetto, A. & Vicari, E. Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002).
(
10.1016/S0370-1573(02)00219-3
) / Phys. Rep. by A Pelissetto (2002) -
Alsnielsen, J., Bramwell, S. T., Hutchings, M. T., McIntyre, G. J. & Visser, D. Neutron-scattering investigation of the static critical properties of Rb2CrCl4. J. Phys. Condens. Matter 5, 7871–7892 (1993).
(
10.1088/0953-8984/5/42/009
) / J. Phys. Condens. Matter by J Alsnielsen (1993) -
Bramwell, S. T. & Holdsworth, P. C. W. Magnetization and universal subcritical behavior in 2-dimensional XY magnets. J. Phys. Condens. Matter 5, L53–L59 (1993).
(
10.1088/0953-8984/5/4/004
) / J. Phys. Condens. Matter by ST Bramwell (1993) -
Jiang, S. W., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
(
10.1038/s41563-018-0040-6
) / Nat. Mater. by SW Jiang (2018) -
Shiomi, Y., Takashima, R. & Saitoh, E. Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS3. Phys. Rev. B 96, 134425 (2017).
(
10.1103/PhysRevB.96.134425
) / Phys. Rev. B by Y Shiomi (2017) -
Wildes, A. R., Ronnow, H. M., Roessli, B., Harris, M. J. & Godfrey, K. W. Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B 74, 094422 (2006).
(
10.1103/PhysRevB.74.094422
) / Phys. Rev. B by AR Wildes (2006) -
Kurosawa, K., Saito, S. & Yamaguchi, Y. Neutron-diffraction study on MnPS3 and FePS3. J. Phys. Soc. Jpn 52, 3919–3926 (1983).
(
10.1143/JPSJ.52.3919
) / J. Phys. Soc. Jpn by K Kurosawa (1983) -
Leflem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic-interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). J. Phys. Chem. Solids 43, 455–461 (1982).
(
10.1016/0022-3697(82)90156-1
) / J. Phys. Chem. Solids by G Leflem (1982) - Kim, M. et al. Hall micromagnetometry of individual two-dimensional ferromagnets. Preprint at https://arxiv.org/abs/1902.06988 (2019).
-
Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).
(
10.1088/0953-8984/7/1/008
) / J. Phys. Condens. Matter by V Carteaux (1995) -
Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).
(
10.1002/ejic.200501020
) / Eur. J. Inorg. Chem. by HJ Deiseroth (2006) -
Lancon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys. Rev. B 94, 214407 (2016).
(
10.1103/PhysRevB.94.214407
) / Phys. Rev. B by D Lancon (2016) -
Makimura, C., Sekine, T., Tanokura, Y. & Kurosawa, K. Raman-scattering in the 2-dimensional antiferromagnet MnPSe3. J. Phys. Condens. Matter 5, 623–632 (1993).
(
10.1088/0953-8984/5/5/013
) / J. Phys. Condens. Matter by C Makimura (1993) -
McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3. Cryst. Phys. Rev. Mater. 1, 014001 (2017).
(
10.1103/PhysRevMaterials.1.014001
) / Cryst. Phys. Rev. Mater. by MA McGuire (2017) -
Kerr, J. XLIII: On rotation of the plane of polarization by reflection from the pole of a magnet. Lond. Edinb. Dublin Philos. Mag. J. Sci. 3, 321–343 (1877).
(
10.1080/14786447708639245
) / Lond. Edinb. Dublin Philos. Mag. J. Sci. by J Kerr (1877)
Dates
Type | When |
---|---|
Created | 6 years, 3 months ago (May 9, 2019, 8:06 a.m.) |
Deposited | 2 years, 3 months ago (May 20, 2023, 5:56 p.m.) |
Indexed | 29 minutes ago (Aug. 21, 2025, 10:38 a.m.) |
Issued | 6 years, 3 months ago (May 1, 2019) |
Published | 6 years, 3 months ago (May 1, 2019) |
Published Online | 6 years, 3 months ago (May 7, 2019) |
Published Print | 6 years, 3 months ago (May 1, 2019) |
@article{Gibertini_2019, title={Magnetic 2D materials and heterostructures}, volume={14}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-019-0438-6}, DOI={10.1038/s41565-019-0438-6}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Gibertini, M. and Koperski, M. and Morpurgo, A. F. and Novoselov, K. S.}, year={2019}, month=may, pages={408–419} }