Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Liu, C., Yan, X., Song, X., Ding, S., Zhang, D. W., & Zhou, P. (2018). A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nature Nanotechnology, 13(5), 404–410.

Authors 6
  1. Chunsen Liu (first)
  2. Xiao Yan (additional)
  3. Xiongfei Song (additional)
  4. Shijin Ding (additional)
  5. David Wei Zhang (additional)
  6. Peng Zhou (additional)
References 45 Referenced 383
  1. Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010). (10.1109/JPROC.2010.2070470) / Proc. IEEE by AC Seabaugh (2010)
  2. Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). (10.1038/nature10679) / Nature by AM Ionescu (2011)
  3. Wang, P. F. et al. A semi-floating gate transistor for low-voltage ultrafast memory and sensing operation. Science 341, 640–643 (2013). (10.1126/science.1240961) / Science by PF Wang (2013)
  4. Makarov, A., Sverdlov, V. & Selberherr, S. Emerging memory technologies: trends, challenges, and modeling methods. Microelectron. Reliab. 52, 628–634 (2012). (10.1016/j.microrel.2011.10.020) / Microelectron. Reliab. by A Makarov (2012)
  5. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013). (10.1038/nnano.2012.240) / Nat. Nanotech. by JJ Yang (2013)
  6. International Technology Roadmap for Semiconductors 2.0 (ITRS, 2015); http://www.itrs2.net/
  7. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012). (10.1021/nn303772b) / ACS Nano by D Lembke (2012)
  8. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotech. by B Radisavljevic (2011)
  9. Fang, H. & Chuang et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). (10.1021/nl301702r) / Nano Lett. by H Fang (2012)
  10. Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014). (10.1021/nn5027388) / ACS Nano by Y Deng (2014)
  11. Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotech. 8, 826–830 (2013). (10.1038/nnano.2013.206) / Nat. Nanotech. by K Roy (2013)
  12. Baugher, B. W., Churchill, H. O., Yang, Y. & Jarilloherrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotech. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nat. Nanotech. by BW Baugher (2014)
  13. Yu, Z. et al. Analyzing the carrier mobility in transition metal dichalcogenide MoS2 field effect transistors. Adv. Funct. Mater. 27, 1604093 (2017). (10.1002/adfm.201604093) / Adv. Funct. Mater. by Z Yu (2017)
  14. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012). (10.1021/nl3002205) / Nano Lett. by L Britnell (2012)
  15. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2012). (10.1021/nn305275h) / ACS Nano by W Zhao (2012)
  16. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotech. 9, 111–115 (2014). (10.1038/nnano.2013.277) / Nat. Nanotech. by Y Zhang (2014)
  17. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nat. Nanotech. by L Li (2014)
  18. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). (10.1038/nature14417) / Nature by K Kang (2015)
  19. Yu, W. J., Chae, S. H., Lee, S. Y., Duong, D. L. & Lee, Y. H. Ultra transparent, flexible single walled carbon nanotube non-volatile memory device with an oxygen decorated graphene electrode. Adv. Mater. 23, 1889–1893 (2011). (10.1002/adma.201004444) / Adv. Mater. by WJ Yu (2011)
  20. Lee, S. et al. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices. Appl. Phys. Lett. 100, 023109 (2012). (10.1063/1.3675633) / Appl. Phys. Lett. by S Lee (2012)
  21. Kim, S. M. et al. Transparent and flexible graphene charge-trap memory. ACS Nano 6, 7879–7884 (2012). (10.1021/nn302193q) / ACS Nano by SM Kim (2012)
  22. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013). (10.1021/nn3059136) / ACS Nano by S Bertolazzi (2013)
  23. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). (10.1038/ncomms2652) / Nat. Commun. by MS Choi (2013)
  24. Zhang, E. et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9, 612–619 (2014). (10.1021/nn5059419) / ACS Nano by E Zhang (2014)
  25. Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). (10.1038/ncomms12725) / Nat. Commun. by QA Vu (2016)
  26. He, G. et al. Thermally assisted nonvolatile memory in monolayer MoS2 transistors. Nano Lett. 16, 6445 (2016). (10.1021/acs.nanolett.6b02905) / Nano Lett. by G He (2016)
  27. Lee, H. S. et al. MoS2 nanosheets for top gate nonvolatile memory transistor channel. Small 8, 3111–3115 (2012). (10.1002/smll.201200752) / Small by HS Lee (2012)
  28. Lee, Y. T. et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano 9, 10394–10401 (2015). (10.1021/acsnano.5b04592) / ACS Nano by YT Lee (2015)
  29. JEDEC Solid State Technology Association Standard JESD79-2b 65 (2005); http://cs.ecs.baylor.edu/~maurer/CSI5338/JESD79-2B.pdf
  30. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). (10.1038/ncomms14948) / Nat. Commun. by S Wachter (2017)
  31. Yu, L. et al. Design, modeling and fabrication of CVD grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016). (10.1021/acs.nanolett.6b02739) / Nano Lett. by L Yu (2016)
  32. Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015). (10.1021/acs.nanolett.5b01792) / Nano Lett. by R Yan (2015)
  33. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014). (10.1038/nnano.2014.167) / Nat. Nanotech. by X Hong (2014)
  34. Ji, Y. et al. Boron nitride as two dimensional dielectric: reliability and dielectric breakdown. Appl. Phys. Lett. 108, 012905 (2016). (10.1063/1.4939131) / Appl. Phys. Lett. by Y Ji (2016)
  35. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 474–479 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  36. Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013). (10.1038/srep01608) / Sci. Rep. by H Zeng (2013)
  37. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013). (10.1021/nl304777e) / Nano Lett. by W Liu (2013)
  38. Gong, C., Zhang, H., Wang, W. & Colombo, L. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). (10.1063/1.4817409) / Appl. Phys. Lett. by C Gong (2013)
  39. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). (10.1038/nature15387) / Nature by D Sarkar (2015)
  40. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012). (10.1021/nl303583v) / Nano Lett. by S Das (2012)
  41. Xu, K. et al. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 27, 7881–7887 (2015). / Adv. Mater. by K Xu (2015)
  42. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013). (10.1021/nn303973r) / ACS Nano by H Shi (2013)
  43. Imam, S. A., Deshpande, T., Guermoune, A., Siaj, M. & Szkopek, T. Charge transfer hysteresis in graphene dual-dielectric memory cell structures. Appl. Phys. Lett. 99, 082109 (2011). (10.1063/1.3630227) / Appl. Phys. Lett. by SA Imam (2011)
  44. Wang, H., Wu, Y., Cong, C., Shang, J. & Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 4, 7221–7228 (2010). (10.1021/nn101950n) / ACS Nano by H Wang (2010)
  45. Late, D. J., Liu, B., Matte, H. R., Dravid, V. P. & Rao, C. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012). (10.1021/nn301572c) / ACS Nano by DJ Late (2012)
Dates
Type When
Created 7 years, 4 months ago (April 11, 2018, 10:26 a.m.)
Deposited 2 years, 3 months ago (May 20, 2023, 5:53 p.m.)
Indexed 20 hours, 30 minutes ago (Aug. 21, 2025, 12:46 p.m.)
Issued 7 years, 4 months ago (April 9, 2018)
Published 7 years, 4 months ago (April 9, 2018)
Published Online 7 years, 4 months ago (April 9, 2018)
Published Print 7 years, 3 months ago (May 1, 2018)
Funders 0

None

@article{Liu_2018, title={A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications}, volume={13}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/s41565-018-0102-6}, DOI={10.1038/s41565-018-0102-6}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Liu, Chunsen and Yan, Xiao and Song, Xiongfei and Ding, Shijin and Zhang, David Wei and Zhou, Peng}, year={2018}, month=apr, pages={404–410} }