Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Qian, X., Zhou, J., & Chen, G. (2021). Phonon-engineered extreme thermal conductivity materials. Nature Materials, 20(9), 1188–1202.

Authors 3
  1. Xin Qian (first)
  2. Jiawei Zhou (additional)
  3. Gang Chen (additional)
References 175 Referenced 566
  1. Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, 1996).
  2. Peierls, R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929). (10.1002/andp.19293950803) / Ann. Phys. by R Peierls (1929)
  3. Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993). (10.1103/PhysRevB.48.12581) / Phys. Rev. B by PB Allen (1993)
  4. Klemens, P. G. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. A 68, 1113 (1955). (10.1088/0370-1298/68/12/303) / Proc. Phys. Soc. A by PG Klemens (1955)
  5. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959). (10.1103/PhysRev.113.1046) / Phys. Rev. by J Callaway (1959)
  6. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003). (10.1063/1.1524305) / J. Appl. Phys. by DG Cahill (2003)
  7. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014). (10.1063/1.4832615) / Appl. Phys. Rev. by DG Cahill (2014)
  8. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). (10.1002/adma.200600527) / Adv. Mater. by MS Dresselhaus (2007)
  9. Volz, S. G. & Chen, G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651 (2000). (10.1103/PhysRevB.61.2651) / Phys. Rev. B by SG Volz (2000)
  10. McGaughey, A. J. H. & Larkin, J. M. Predicting phonon properties from equilibrium molecular dynamics simulations. Annu. Rev. Heat. Transf. 17, 49–87 (2014). (10.1615/AnnualRevHeatTransfer.2013006915) / Annu. Rev. Heat. Transf. by AJH McGaughey (2014)
  11. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007). (10.1063/1.2822891) / Appl. Phys. Lett. by DA Broido (2007)
  12. Zhang, W., Fisher, T. S. & Mingo, N. The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat. Transf. B 51, 333–349 (2007). (10.1080/10407790601144755) / Numer. Heat. Transf. B by W Zhang (2007)
  13. Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2015). (10.1038/nphys3509) / Nat. Phys. by A Marcolongo (2015)
  14. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010). (10.1103/PhysRevLett.104.136403) / Phys. Rev. Lett. by AP Bartok (2010)
  15. Dai, J. & Tian, Z. Rigorous formalism of anharmonic atomistic Green’s function for three-dimensional interfaces. Phys. Rev. B 101, 041301(R) (2020). (10.1103/PhysRevB.101.041301) / Phys. Rev. B by J Dai (2020)
  16. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011). (10.1103/PhysRevLett.107.095901) / Phys. Rev. Lett. by AJ Minnich (2011)
  17. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010). (10.1038/nmat2568) / Nat. Mater. by ME Siemens (2010)
  18. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018). (10.1126/science.aat5522) / Science by JS Kang (2018)
  19. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018). (10.1126/science.aat7932) / Science by F Tian (2018)
  20. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018). (10.1126/science.aat8982) / Science by S Li (2018)
  21. van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites. Phys. Rev. 6, 041061 (2016). (10.1103/PhysRevX.6.041061) / Phys. Rev. by A van Roekeghem (2016)
  22. Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comput. Mater. 3, 49 (2017). (10.1038/s41524-017-0052-9) / npj Comput. Mater. by HR Seyf (2017)
  23. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006). (10.1103/PhysRevLett.96.045901) / Phys. Rev. Lett. by W Kim (2006)
  24. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008). (10.1126/science.1156446) / Science by B Poudel (2008)
  25. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012). (10.1126/science.1225549) / Science by MN Luckyanova (2012)
  26. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014). (10.1038/nmat3826) / Nat. Mater. by J Ravichandran (2014)
  27. Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv. 4, eaat9460 (2018). (10.1126/sciadv.aat9460) / Sci. Adv. by MN Luckyanova (2018)
  28. Fermi, E., Pasta, P., S, U. & Tsingou, M. Studies of the Nonlinear Problems (Univ. California, 1955). (10.2172/4376203)
  29. Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019). (10.1126/science.aav3548) / Science by S Huberman (2019)
  30. Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973). (10.1016/0022-3697(73)90092-9) / J. Phys. Chem. Solids by GA Slack (1973)
  31. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013). (10.1103/PhysRevLett.111.025901) / Phys. Rev. Lett. by L Lindsay (2013)
  32. Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. 10, 021063 (2020). (10.1103/PhysRevX.10.021063) / Phys. Rev. by NK Ravichandran (2020)
  33. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201(R) (2017). (10.1103/PhysRevB.96.161201) / Phys. Rev. B by T Feng (2017)
  34. Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015). (10.1063/1.4913441) / Appl. Phys. Lett. by B Lv (2015)
  35. Lindsay, L., Broido, D. A. & Reinecke, T. L. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: a first-principles study. Phys. Rev. B 88, 144306 (2013). (10.1103/PhysRevB.88.144306) / Phys. Rev. B by L Lindsay (2013)
  36. Zheng, Q. et al. Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Phys. Rev. Mater. 3, 014601 (2019). (10.1103/PhysRevMaterials.3.014601) / Phys. Rev. Mater. by Q Zheng (2019)
  37. Gu, X., Wei, Y., Yin, X., Li, B. & Yang, R. Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 041002 (2018). (10.1103/RevModPhys.90.041002) / Rev. Mod. Phys. by X Gu (2018)
  38. Lindsay, L., Broido, D. A. & Mingo, N. Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009). (10.1103/PhysRevB.80.125407) / Phys. Rev. B by L Lindsay (2009)
  39. Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010). (10.1103/PhysRevB.82.115427) / Phys. Rev. B by L Lindsay (2010)
  40. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001). (10.1103/PhysRevLett.87.215502) / Phys. Rev. Lett. by P Kim (2001)
  41. Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B 323, 193–195 (2002). (10.1016/S0921-4526(02)00898-0) / Phys. B by S Maruyama (2002)
  42. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). (10.1021/nl0731872) / Nano Lett. by AA Balandin (2008)
  43. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008). (10.1063/1.3006335) / Rev. Sci. Instrum. by AJ Schmidt (2008)
  44. Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the ‘problem of long wavelengths’. Nano Lett. 5, 1221–1225 (2005). (10.1021/nl050714d) / Nano Lett. by N Mingo (2005)
  45. Lepri, S. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003). (10.1016/S0370-1573(02)00558-6) / Phys. Rep. by S Lepri (2003)
  46. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008). (10.1103/PhysRevLett.101.075903) / Phys. Rev. Lett. by CW Chang (2008)
  47. Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014). (10.1038/ncomms4689) / Nat. Commun. by X Xu (2014)
  48. Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014). (10.1103/RevModPhys.86.669) / Rev. Mod. Phys. by T Takabatake (2014)
  49. Clarke, D. R. & Phillpot, S. R. Thermal barrier coating materials. Mater. Today 8, 22–29 (2005). (10.1016/S1369-7021(05)70934-2) / Mater. Today by DR Clarke (2005)
  50. Weathers, A. et al. Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Phys. Rev. B 96, 214202 (2017). (10.1103/PhysRevB.96.214202) / Phys. Rev. B by A Weathers (2017)
  51. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008). (10.1038/nmat2273) / Nat. Mater. by M Christensen (2008)
  52. Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996). (10.1126/science.272.5266.1325) / Science by BC Sales (1996)
  53. Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360, 1445–1458 (2018). (10.1126/science.aar8072) / Science by S Mukhopadhyay (2018)
  54. Hoogeboom-Pot, K. M. et al. A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency. Proc. Natl Acad. Sci. USA 112, 4846–4851 (2015). (10.1073/pnas.1503449112) / Proc. Natl Acad. Sci. USA by KM Hoogeboom-Pot (2015)
  55. Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014). (10.1038/ncomms4525) / Nat. Commun. by S Lee (2014)
  56. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011). (10.1038/nmat3035) / Nat. Mater. by O Delaire (2011)
  57. Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012). (10.1103/PhysRevB.85.184303) / Phys. Rev. B by Z Tian (2012)
  58. Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015). (10.1038/nphys3492) / Nat. Phys. by CW Li (2015)
  59. Ma, H. et al. Supercompliant and soft (CH3NH3)3Bi2I9 crystal with ultralow thermal conductivity. Phys. Rev. Lett. 123, 155901 (2019). (10.1103/PhysRevLett.123.155901) / Phys. Rev. Lett. by H Ma (2019)
  60. Qian, X., Gu, X. & Yang, R. Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Appl. Phys. Lett. 108, 063902 (2016). (10.1063/1.4941921) / Appl. Phys. Lett. by X Qian (2016)
  61. Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 2488–2492 (2014). (10.1021/jz5012109) / J. Phys. Chem. Lett. by A Pisoni (2014)
  62. Zhu, T. & Ertekin, E. Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity. Energy Environ. Sci. 12, 216–229 (2019). (10.1039/C8EE02820F) / Energy Environ. Sci. by T Zhu (2019)
  63. Ioffe, A. F. Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12, 42 (1959). (10.1063/1.3060810) / Phys. Today by AF Ioffe (1959)
  64. Tamura, S. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983). (10.1103/PhysRevB.27.858) / Phys. Rev. B by S Tamura (1983)
  65. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011). (10.1103/PhysRevLett.106.045901) / Phys. Rev. Lett. by J Garg (2011)
  66. Murakami, T., Shiga, T., Hori, T., Esfarjani, K. & Shiomi, J. Importance of local force fields on lattice thermal conductivity reduction in PbTe1−xSexalloys. Europhys. Lett. 102, 46002 (2013). (10.1209/0295-5075/102/46002) / Europhys. Lett. by T Murakami (2013)
  67. Arrigoni, M., Carrete, J., Mingo, N. & Madsen, G. K. H. First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: the role of force-constant disorder. Phys. Rev. B 98, 115205 (2018). (10.1103/PhysRevB.98.115205) / Phys. Rev. B by M Arrigoni (2018)
  68. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019). (10.1038/s41567-019-0520-x) / Nat. Phys. by M Simoncelli (2019)
  69. Isaeva, L., Barbalinardo, G., Donadio, D. & Baroni, S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nat. Commun. 10, 3853 (2019). (10.1038/s41467-019-11572-4) / Nat. Commun. by L Isaeva (2019)
  70. Yang, R. & Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004). (10.1103/PhysRevB.69.195316) / Phys. Rev. B by R Yang (2004)
  71. Casimir, H. B. G. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938). (10.1016/S0031-8914(38)80162-2) / Physica by HBG Casimir (1938)
  72. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 Crystals. Science 315, 351–353 (2007). (10.1126/science.1136494) / Science by C Chiritescu (2007)
  73. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019). (10.1126/sciadv.aax1325) / Sci. Adv. by S Vaziri (2019)
  74. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958 (1998). (10.1103/PhysRevB.57.14958) / Phys. Rev. B by G Chen (1998)
  75. Majumdar, A. Microscale heat conduction in dielectric thin films. J. Heat. Transf. 115, 7–16 (1993). (10.1115/1.2910673) / J. Heat. Transf. by A Majumdar (1993)
  76. Chen, G. in Recent Trends in Thermoelectric Materials Research III Vol. 71 (ed. Tritt, T. M.) Ch. 5, 203–259 (Elsevier, 2001). (10.1016/S0080-8784(01)80130-7)
  77. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000). (10.1103/PhysRevB.61.3091) / Phys. Rev. B by R Venkatasubramanian (2000)
  78. Chen, G. Phonon wave heat conduction in thin films and superlattices. J. Heat. Transf. 121, 945–953 (1999). (10.1115/1.2826085) / J. Heat. Transf. by G Chen (1999)
  79. Yang, B. & Chen, G. Partially coherent phonon heat conduction in superlattices. Phys. Rev. B 67, 195311 (2003). (10.1103/PhysRevB.67.195311) / Phys. Rev. B by B Yang (2003)
  80. Maire, J. et al. Heat conduction tuning by wave nature of phonons. Sci. Adv. 3, e1700027 (2017). (10.1126/sciadv.1700027) / Sci. Adv. by J Maire (2017)
  81. Sperling, L. H. Introduction to Physical Polymer Science (Wiley, 2005). (10.1002/0471757128)
  82. Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012). (10.1103/PhysRevB.86.104307) / Phys. Rev. B by J Liu (2012)
  83. Zhang, T. & Luo, T. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 112, 094304 (2012). (10.1063/1.4759293) / J. Appl. Phys. by T Zhang (2012)
  84. Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008). (10.1103/PhysRevLett.101.235502) / Phys. Rev. Lett. by A Henry (2008)
  85. Zhang, T., Wu, X. & Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118, 21148–21159 (2014). (10.1021/jp5051639) / J. Phys. Chem. C by T Zhang (2014)
  86. Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017). (10.1103/PhysRevLett.119.185901) / Phys. Rev. Lett. by N Shulumba (2017)
  87. Wang, X., Kaviany, M. & Huang, B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017). (10.1039/C7NR06216H) / Nanoscale by X Wang (2017)
  88. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013). (10.1021/ma400612y) / Macromolecules by X Wang (2013)
  89. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010). (10.1038/nnano.2010.27) / Nat. Nanotechnol. by S Shen (2010)
  90. Shrestha, R. et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018). (10.1038/s41467-018-03978-3) / Nat. Commun. by R Shrestha (2018)
  91. Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019). (10.1038/s41467-019-09697-7) / Nat. Commun. by Y Xu (2019)
  92. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014). (10.1038/nnano.2014.44) / Nat. Nanotechnol. by V Singh (2014)
  93. Ronca, S., Igarashi, T., Forte, G. & Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123, 203–210 (2017). (10.1016/j.polymer.2017.07.027) / Polymer by S Ronca (2017)
  94. Zhu, B. et al. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2, 3931–3944 (2017). (10.1021/acsomega.7b00563) / ACS Omega by B Zhu (2017)
  95. Smith, M. K., Singh, V., Kalaitzidou, K. & Cola, B. A. Poly(3-hexylthiophene) nanotube array surfaces with tunable wetting and contact thermal energy transport. ACS Nano 9, 1080–1088 (2015). (10.1021/nn5027406) / ACS Nano by MK Smith (2015)
  96. Lu, C. et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115, 52–59 (2017). (10.1016/j.polymer.2017.02.024) / Polymer by C Lu (2017)
  97. Kurabayashi, K., Asheghi, M. & Goodson, K. E. Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999). (10.1109/84.767114) / J. Microelectromech. Syst. by K Kurabayashi (1999)
  98. Wei, X., Zhang, T. & Luo, T. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions. Phys. Chem. Chem. Phys. 18, 32146–32154 (2016). (10.1039/C6CP06643G) / Phys. Chem. Chem. Phys. by X Wei (2016)
  99. Shanker, A. et al. High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 3, e1700342 (2017). (10.1126/sciadv.1700342) / Sci. Adv. by A Shanker (2017)
  100. Xie, X. et al. High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017). (10.1103/PhysRevB.95.035406) / Phys. Rev. B by X Xie (2017)
  101. Xu, Y. et al. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4, eaar3031 (2018). (10.1126/sciadv.aar3031) / Sci. Adv. by Y Xu (2018)
  102. Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015). (10.1038/nmat4141) / Nat. Mater. by GH Kim (2015)
  103. Miyazaki, Y., Nishiyama, T., Takahashi, H., Ktagiri, J.-I. & Takezawa, Y., Development of highly thermoconductive epoxy composites. In 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena 638–641 (IEEE, 2009). (10.1109/CEIDP.2009.5377902)
  104. Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019). (10.1038/s41586-019-1420-z) / Nature by L Cui (2019)
  105. Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007). (10.1126/science.1145220) / Science by Z Wang (2007)
  106. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). (10.1038/natrevmats.2016.50)
  107. Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013). (10.1103/PhysRevLett.110.015902) / Phys. Rev. Lett. by JC Duda (2013)
  108. Liu, J. et al. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. Nano Lett. 13, 5594–5599 (2013). (10.1021/nl403244s) / Nano Lett. by J Liu (2013)
  109. Ong, W.-L. & Malen, J. A. Thermal transport in nanostructured organic-inorganic hybrid materials. Annu. Rev. Heat. Transf. 19, 67–126 (2016). (10.1615/AnnualRevHeatTransfer.2016014222) / Annu. Rev. Heat. Transf. by W-L Ong (2016)
  110. Yang, J. et al. Solution-processable superatomic thin-films. J. Am. Chem. Soc. 141, 10967–10971 (2019). (10.1021/jacs.9b04705) / J. Am. Chem. Soc. by J Yang (2019)
  111. Li, R., Lee, E. & Luo, T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases. Mater. Today Phys. 12, 100181 (2019). (10.1016/j.mtphys.2020.100181) / Mater. Today Phys. by R Li (2019)
  112. Qian, X., Peng, S., Li, X., Wei, Y. & Yang, R. Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. Mater. Today Phys. 10, 100140 (2019). (10.1016/j.mtphys.2019.100140) / Mater. Today Phys. by X Qian (2019)
  113. Ju, S. et al. Designing nanostructures for phonon transport via bayesian optimization. Phys. Rev. 7, 021024 (2017). (10.1103/PhysRevX.7.021024) / Phys. Rev. by S Ju (2017)
  114. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019). (10.1038/s41524-019-0203-2) / npj Comput. Mater. by S Wu (2019)
  115. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. 4, 011019 (2014). (10.1103/PhysRevX.4.011019) / Phys. Rev. by J Carrete (2014)
  116. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014). (10.1038/ncomms5035) / Nat. Commun. by J Cho (2014)
  117. Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018). (10.1038/s41565-018-0227-7) / Nat. Nanotechnol. by JA Tomko (2018)
  118. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015). (10.1021/nl504505t) / Nano Lett. by JF Ihlefeld (2015)
  119. Shin, J. et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl Acad. Sci. USA 116, 5973–5978 (2019). (10.1073/pnas.1817082116) / Proc. Natl Acad. Sci. USA by J Shin (2019)
  120. Lu, Q. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020). (10.1038/s41563-020-0612-0) / Nat. Mater. by Q Lu (2020)
  121. Menyhart, K. & Krarti, M. Potential energy savings from deployment of dynamic insulation materials for US residential buildings. Build. Environ. 114, 203–218 (2017). (10.1016/j.buildenv.2016.12.009) / Build. Environ. by K Menyhart (2017)
  122. Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018). (10.1038/s41560-018-0243-8) / Nat. Energy by M Hao (2018)
  123. Lyeo, H.-K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006). (10.1063/1.2359354) / Appl. Phys. Lett. by H-K Lyeo (2006)
  124. Caccia, M. et al. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature 562, 406–409 (2018). (10.1038/s41586-018-0593-1) / Nature by M Caccia (2018)
  125. Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058–A1069 (1964). (10.1103/PhysRev.134.A1058) / Phys. Rev. by CJ Glassbrenner (1964)
  126. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomie yibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999). (10.1080/13642819908223054) / Philos. Mag. B by PB Allen (1999)
  127. Pompe, G. & Hegenbarth, E. Thermal conductivity of amorphous Si at low temperatures. Phys. Status Solidi B 47, 103–108 (1988). (10.1002/pssb.2221470109) / Phys. Status Solidi B by G Pompe (1988)
  128. Cahill, D. G., Fischer, H. E., Klitsner, T., Swartz, E. T. & Pohl, R. O. Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989). (10.1116/1.576265) / J. Vac. Sci. Technol. A by DG Cahill (1989)
  129. Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077–6081 (1994). (10.1103/PhysRevB.50.6077) / Phys. Rev. B by DG Cahill (1994)
  130. McGaughey, A. J. H., Jain, A. & Kim, H.-Y. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019). (10.1063/1.5064602) / J. Appl. Phys. by AJH McGaughey (2019)
  131. Shiomi, J., Esfarjani, K. & Chen, G. Thermal conductivity of half-Heusler compounds from first-principles calculations. Phys. Rev. B 84, 104302 (2011). (10.1103/PhysRevB.84.104302) / Phys. Rev. B by J Shiomi (2011)
  132. Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013). (10.1103/PhysRevLett.110.025901) / Phys. Rev. Lett. by JA Johnson (2013)
  133. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015). (10.1038/nnano.2015.109) / Nat. Nanotechnol. by Y Hu (2015)
  134. Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020). (10.1126/science.aaz6149) / Science by K Chen (2020)
  135. Morelli, D. T. & Slack, G. A. in High Thermal Conductivity Materials (eds Shindé, S. L. & Goela, J. S.) Ch. 2, 37–68 (Springer, 2005). (10.1007/0-387-25100-6_2)
  136. Dames, C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science 361, 549–550 (2018). (10.1126/science.aau4793) / Science by C Dames (2018)
  137. Giri, A. & Hopkins, P. Achieving a better heat conductor. Nat. Mater. 19, 481–490 (2020). (10.1038/s41563-020-0658-z) / Nat. Mater. by A Giri (2020)
  138. Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017). (10.1021/acs.nanolett.7b03437) / Nano Lett. by JS Kang (2017)
  139. Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017). (10.1016/j.mtphys.2017.12.005) / Mater. Today Phys. by X Qian (2017)
  140. Cuffe, J. et al. Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015). (10.1103/PhysRevB.91.245423) / Phys. Rev. B by J Cuffe (2015)
  141. Liu, W. & Asheghi, M. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat. Transf. 128, 75–83 (2006). (10.1115/1.2130403) / J. Heat. Transf. by W Liu (2006)
  142. Asheghi, M., Leung, Y. K., Wong, S. S. & Goodson, K. E. Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997). (10.1063/1.119402) / Appl. Phys. Lett. by M Asheghi (1997)
  143. Goodson, K. E. & Ju, Y. S. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999). (10.1146/annurev.matsci.29.1.261) / Annu. Rev. Mater. Sci. by KE Goodson (1999)
  144. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003). (10.1063/1.1616981) / Appl. Phys. Lett. by D Li (2003)
  145. Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004). (10.1063/1.1631734) / J. Appl. Phys. by C Dames (2004)
  146. Choy, C. L., Wong, Y. W., Yang, G. W. & Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. B 37, 3359–3367 (1999). (10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S) / J. Polym. Sci. B by CL Choy (1999)
  147. Piraux, L., Kinany-Alaoui, M., Issi, J. P., Begin, D. & Billaud, D. Thermal conductivity of an oriented polyacetylene film. Solid State Commun. 79, 427–429 (1989). (10.1016/0038-1098(89)91073-9) / Solid State Commun. by L Piraux (1989)
  148. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972). (10.1080/14786437208229210) / Philos. Mag. by PW Anderson (1972)
  149. Cahill, D., Watson, S. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992). (10.1103/PhysRevB.46.6131) / Phys. Rev. B by D Cahill (1992)
  150. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013). (10.1103/PhysRevB.88.075310) / Phys. Rev. B by X Wang (2013)
  151. Chen, Z. & Dames, C. An anisotropic model for the minimum thermal conductivity. Appl. Phys. Lett. 107, 193104 (2015). (10.1063/1.4935467) / Appl. Phys. Lett. by Z Chen (2015)
  152. Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991). (10.1103/PhysRevB.43.7231) / Phys. Rev. B by P Giannozzi (1991)
  153. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001). (10.1093/acprof:oso/9780198507796.001.0001)
  154. Debernardi, A., Baroni, S. & Molinari, E. Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819–1822 (1995). (10.1103/PhysRevLett.75.1819) / Phys. Rev. Lett. by A Debernardi (1995)
  155. Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014). (10.1016/j.cpc.2014.02.015) / Comput. Phys. Commun. by W Li (2014)
  156. Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013). (10.1103/PhysRevB.87.035437) / Phys. Rev. B by F Yang (2013)
  157. Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) Ch. 42 (Taylor & Francis, 2006).
  158. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011). (10.1103/PhysRevB.84.085204) / Phys. Rev. B by K Esfarjani (2011)
  159. Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015). (10.1038/ncomms7290) / Nat. Commun. by S Lee (2015)
  160. Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015). (10.1038/ncomms7400) / Nat. Commun. by A Cepellotti (2015)
  161. Mingo, N., Hauser, D., Kobayashi, N. P., Plissonier, M. & Shakouri, A. ‘Nanoparticle-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009). (10.1021/nl8031982) / Nano Lett. by N Mingo (2009)
  162. Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015). (10.1103/PhysRevB.92.054301) / Phys. Rev. B by T Tadano (2015)
  163. Liao, B. et al. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015). (10.1103/PhysRevLett.114.115901) / Phys. Rev. Lett. by B Liao (2015)
  164. Zhou, J. et al. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Proc. Natl Acad. Sci. USA 112, 14777–14782 (2015). (10.1073/pnas.1512328112) / Proc. Natl Acad. Sci. USA by J Zhou (2015)
  165. Cahill, D. G. & Pohl, R. O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987). (10.1103/PhysRevB.35.4067) / Phys. Rev. B by DG Cahill (1987)
  166. Dames, C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat. Transf. 16, 7–49 (2013). (10.1615/AnnualRevHeatTransfer.v16.20) / Annu. Rev. Heat. Transf. by C Dames (2013)
  167. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004). (10.1063/1.1819431) / Rev. Sci. Instrum. by DG Cahill (2004)
  168. Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009). (10.1063/1.3212673) / Rev. Sci. Instrum. by AJ Schmidt (2009)
  169. Maznev, A. A., Johnson, J. A. & Nelson, K. A. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011). (10.1103/PhysRevB.84.195206) / Phys. Rev. B by AA Maznev (2011)
  170. Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018). (10.1063/1.5046944) / J. Appl. Phys. by P Jiang (2018)
  171. Qian, X., Ding, Z., Shin, J., Schmidt, A. J. & Chen, G. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Rev. Sci. Instrum. 91, 064903 (2020). (10.1063/5.0003770) / Rev. Sci. Instrum. by X Qian (2020)
  172. Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007). (10.1103/PhysRevB.76.075207) / Phys. Rev. B by YK Koh (2007)
  173. Hua, C., Chen, X., Ravichandran, N. K. & Minnich, A. J. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Phys. Rev. B 95, 205423 (2017). (10.1103/PhysRevB.95.205423) / Phys. Rev. B by C Hua (2017)
  174. Liao, B., Maznev, A. A., Nelson, K. A. & Chen, G. Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature. Nat. Commun. 7, 13174 (2016). (10.1038/ncomms13174) / Nat. Commun. by B Liao (2016)
  175. Zhou, J. et al. Direct observation of large electron-phonon interaction effect on phonon heat transport. Nat. Commun. 11, 6040 (2020). (10.1038/s41467-020-19938-9) / Nat. Commun. by J Zhou (2020)
Dates
Type When
Created 4 years, 5 months ago (March 8, 2021, 12:02 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:39 p.m.)
Indexed 8 minutes ago (Aug. 21, 2025, 3:05 a.m.)
Issued 4 years, 5 months ago (March 8, 2021)
Published 4 years, 5 months ago (March 8, 2021)
Published Online 4 years, 5 months ago (March 8, 2021)
Published Print 3 years, 11 months ago (Sept. 1, 2021)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-FG02-02ER45977
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards2
    1. CBET 1851052
    2. DMR-1419807

@article{Qian_2021, title={Phonon-engineered extreme thermal conductivity materials}, volume={20}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/s41563-021-00918-3}, DOI={10.1038/s41563-021-00918-3}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Qian, Xin and Zhou, Jiawei and Chen, Gang}, year={2021}, month=mar, pages={1188–1202} }