Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Authors
3
- Xin Qian (first)
- Jiawei Zhou (additional)
- Gang Chen (additional)
References
175
Referenced
566
- Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, 1996).
-
Peierls, R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929).
(
10.1002/andp.19293950803
) / Ann. Phys. by R Peierls (1929) -
Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993).
(
10.1103/PhysRevB.48.12581
) / Phys. Rev. B by PB Allen (1993) -
Klemens, P. G. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. A 68, 1113 (1955).
(
10.1088/0370-1298/68/12/303
) / Proc. Phys. Soc. A by PG Klemens (1955) -
Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).
(
10.1103/PhysRev.113.1046
) / Phys. Rev. by J Callaway (1959) -
Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).
(
10.1063/1.1524305
) / J. Appl. Phys. by DG Cahill (2003) -
Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).
(
10.1063/1.4832615
) / Appl. Phys. Rev. by DG Cahill (2014) -
Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).
(
10.1002/adma.200600527
) / Adv. Mater. by MS Dresselhaus (2007) -
Volz, S. G. & Chen, G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651 (2000).
(
10.1103/PhysRevB.61.2651
) / Phys. Rev. B by SG Volz (2000) -
McGaughey, A. J. H. & Larkin, J. M. Predicting phonon properties from equilibrium molecular dynamics simulations. Annu. Rev. Heat. Transf. 17, 49–87 (2014).
(
10.1615/AnnualRevHeatTransfer.2013006915
) / Annu. Rev. Heat. Transf. by AJH McGaughey (2014) -
Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007).
(
10.1063/1.2822891
) / Appl. Phys. Lett. by DA Broido (2007) -
Zhang, W., Fisher, T. S. & Mingo, N. The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat. Transf. B 51, 333–349 (2007).
(
10.1080/10407790601144755
) / Numer. Heat. Transf. B by W Zhang (2007) -
Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2015).
(
10.1038/nphys3509
) / Nat. Phys. by A Marcolongo (2015) -
Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
(
10.1103/PhysRevLett.104.136403
) / Phys. Rev. Lett. by AP Bartok (2010) -
Dai, J. & Tian, Z. Rigorous formalism of anharmonic atomistic Green’s function for three-dimensional interfaces. Phys. Rev. B 101, 041301(R) (2020).
(
10.1103/PhysRevB.101.041301
) / Phys. Rev. B by J Dai (2020) -
Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).
(
10.1103/PhysRevLett.107.095901
) / Phys. Rev. Lett. by AJ Minnich (2011) -
Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).
(
10.1038/nmat2568
) / Nat. Mater. by ME Siemens (2010) -
Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).
(
10.1126/science.aat5522
) / Science by JS Kang (2018) -
Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).
(
10.1126/science.aat7932
) / Science by F Tian (2018) -
Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).
(
10.1126/science.aat8982
) / Science by S Li (2018) -
van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites. Phys. Rev. 6, 041061 (2016).
(
10.1103/PhysRevX.6.041061
) / Phys. Rev. by A van Roekeghem (2016) -
Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comput. Mater. 3, 49 (2017).
(
10.1038/s41524-017-0052-9
) / npj Comput. Mater. by HR Seyf (2017) -
Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).
(
10.1103/PhysRevLett.96.045901
) / Phys. Rev. Lett. by W Kim (2006) -
Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).
(
10.1126/science.1156446
) / Science by B Poudel (2008) -
Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).
(
10.1126/science.1225549
) / Science by MN Luckyanova (2012) -
Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).
(
10.1038/nmat3826
) / Nat. Mater. by J Ravichandran (2014) -
Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv. 4, eaat9460 (2018).
(
10.1126/sciadv.aat9460
) / Sci. Adv. by MN Luckyanova (2018) -
Fermi, E., Pasta, P., S, U. & Tsingou, M. Studies of the Nonlinear Problems (Univ. California, 1955).
(
10.2172/4376203
) -
Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).
(
10.1126/science.aav3548
) / Science by S Huberman (2019) -
Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).
(
10.1016/0022-3697(73)90092-9
) / J. Phys. Chem. Solids by GA Slack (1973) -
Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).
(
10.1103/PhysRevLett.111.025901
) / Phys. Rev. Lett. by L Lindsay (2013) -
Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. 10, 021063 (2020).
(
10.1103/PhysRevX.10.021063
) / Phys. Rev. by NK Ravichandran (2020) -
Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201(R) (2017).
(
10.1103/PhysRevB.96.161201
) / Phys. Rev. B by T Feng (2017) -
Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015).
(
10.1063/1.4913441
) / Appl. Phys. Lett. by B Lv (2015) -
Lindsay, L., Broido, D. A. & Reinecke, T. L. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: a first-principles study. Phys. Rev. B 88, 144306 (2013).
(
10.1103/PhysRevB.88.144306
) / Phys. Rev. B by L Lindsay (2013) -
Zheng, Q. et al. Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Phys. Rev. Mater. 3, 014601 (2019).
(
10.1103/PhysRevMaterials.3.014601
) / Phys. Rev. Mater. by Q Zheng (2019) -
Gu, X., Wei, Y., Yin, X., Li, B. & Yang, R. Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 041002 (2018).
(
10.1103/RevModPhys.90.041002
) / Rev. Mod. Phys. by X Gu (2018) -
Lindsay, L., Broido, D. A. & Mingo, N. Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009).
(
10.1103/PhysRevB.80.125407
) / Phys. Rev. B by L Lindsay (2009) -
Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).
(
10.1103/PhysRevB.82.115427
) / Phys. Rev. B by L Lindsay (2010) -
Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
(
10.1103/PhysRevLett.87.215502
) / Phys. Rev. Lett. by P Kim (2001) -
Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B 323, 193–195 (2002).
(
10.1016/S0921-4526(02)00898-0
) / Phys. B by S Maruyama (2002) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).
(
10.1063/1.3006335
) / Rev. Sci. Instrum. by AJ Schmidt (2008) -
Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the ‘problem of long wavelengths’. Nano Lett. 5, 1221–1225 (2005).
(
10.1021/nl050714d
) / Nano Lett. by N Mingo (2005) -
Lepri, S. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).
(
10.1016/S0370-1573(02)00558-6
) / Phys. Rep. by S Lepri (2003) -
Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008).
(
10.1103/PhysRevLett.101.075903
) / Phys. Rev. Lett. by CW Chang (2008) -
Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014).
(
10.1038/ncomms4689
) / Nat. Commun. by X Xu (2014) -
Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014).
(
10.1103/RevModPhys.86.669
) / Rev. Mod. Phys. by T Takabatake (2014) -
Clarke, D. R. & Phillpot, S. R. Thermal barrier coating materials. Mater. Today 8, 22–29 (2005).
(
10.1016/S1369-7021(05)70934-2
) / Mater. Today by DR Clarke (2005) -
Weathers, A. et al. Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Phys. Rev. B 96, 214202 (2017).
(
10.1103/PhysRevB.96.214202
) / Phys. Rev. B by A Weathers (2017) -
Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).
(
10.1038/nmat2273
) / Nat. Mater. by M Christensen (2008) -
Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).
(
10.1126/science.272.5266.1325
) / Science by BC Sales (1996) -
Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360, 1445–1458 (2018).
(
10.1126/science.aar8072
) / Science by S Mukhopadhyay (2018) -
Hoogeboom-Pot, K. M. et al. A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency. Proc. Natl Acad. Sci. USA 112, 4846–4851 (2015).
(
10.1073/pnas.1503449112
) / Proc. Natl Acad. Sci. USA by KM Hoogeboom-Pot (2015) -
Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).
(
10.1038/ncomms4525
) / Nat. Commun. by S Lee (2014) -
Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).
(
10.1038/nmat3035
) / Nat. Mater. by O Delaire (2011) -
Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012).
(
10.1103/PhysRevB.85.184303
) / Phys. Rev. B by Z Tian (2012) -
Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).
(
10.1038/nphys3492
) / Nat. Phys. by CW Li (2015) -
Ma, H. et al. Supercompliant and soft (CH3NH3)3Bi2I9 crystal with ultralow thermal conductivity. Phys. Rev. Lett. 123, 155901 (2019).
(
10.1103/PhysRevLett.123.155901
) / Phys. Rev. Lett. by H Ma (2019) -
Qian, X., Gu, X. & Yang, R. Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Appl. Phys. Lett. 108, 063902 (2016).
(
10.1063/1.4941921
) / Appl. Phys. Lett. by X Qian (2016) -
Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 2488–2492 (2014).
(
10.1021/jz5012109
) / J. Phys. Chem. Lett. by A Pisoni (2014) -
Zhu, T. & Ertekin, E. Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity. Energy Environ. Sci. 12, 216–229 (2019).
(
10.1039/C8EE02820F
) / Energy Environ. Sci. by T Zhu (2019) -
Ioffe, A. F. Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12, 42 (1959).
(
10.1063/1.3060810
) / Phys. Today by AF Ioffe (1959) -
Tamura, S. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983).
(
10.1103/PhysRevB.27.858
) / Phys. Rev. B by S Tamura (1983) -
Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011).
(
10.1103/PhysRevLett.106.045901
) / Phys. Rev. Lett. by J Garg (2011) -
Murakami, T., Shiga, T., Hori, T., Esfarjani, K. & Shiomi, J. Importance of local force fields on lattice thermal conductivity reduction in PbTe1−xSexalloys. Europhys. Lett. 102, 46002 (2013).
(
10.1209/0295-5075/102/46002
) / Europhys. Lett. by T Murakami (2013) -
Arrigoni, M., Carrete, J., Mingo, N. & Madsen, G. K. H. First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: the role of force-constant disorder. Phys. Rev. B 98, 115205 (2018).
(
10.1103/PhysRevB.98.115205
) / Phys. Rev. B by M Arrigoni (2018) -
Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019).
(
10.1038/s41567-019-0520-x
) / Nat. Phys. by M Simoncelli (2019) -
Isaeva, L., Barbalinardo, G., Donadio, D. & Baroni, S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nat. Commun. 10, 3853 (2019).
(
10.1038/s41467-019-11572-4
) / Nat. Commun. by L Isaeva (2019) -
Yang, R. & Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).
(
10.1103/PhysRevB.69.195316
) / Phys. Rev. B by R Yang (2004) -
Casimir, H. B. G. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938).
(
10.1016/S0031-8914(38)80162-2
) / Physica by HBG Casimir (1938) -
Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 Crystals. Science 315, 351–353 (2007).
(
10.1126/science.1136494
) / Science by C Chiritescu (2007) -
Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).
(
10.1126/sciadv.aax1325
) / Sci. Adv. by S Vaziri (2019) -
Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958 (1998).
(
10.1103/PhysRevB.57.14958
) / Phys. Rev. B by G Chen (1998) -
Majumdar, A. Microscale heat conduction in dielectric thin films. J. Heat. Transf. 115, 7–16 (1993).
(
10.1115/1.2910673
) / J. Heat. Transf. by A Majumdar (1993) -
Chen, G. in Recent Trends in Thermoelectric Materials Research III Vol. 71 (ed. Tritt, T. M.) Ch. 5, 203–259 (Elsevier, 2001).
(
10.1016/S0080-8784(01)80130-7
) -
Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000).
(
10.1103/PhysRevB.61.3091
) / Phys. Rev. B by R Venkatasubramanian (2000) -
Chen, G. Phonon wave heat conduction in thin films and superlattices. J. Heat. Transf. 121, 945–953 (1999).
(
10.1115/1.2826085
) / J. Heat. Transf. by G Chen (1999) -
Yang, B. & Chen, G. Partially coherent phonon heat conduction in superlattices. Phys. Rev. B 67, 195311 (2003).
(
10.1103/PhysRevB.67.195311
) / Phys. Rev. B by B Yang (2003) -
Maire, J. et al. Heat conduction tuning by wave nature of phonons. Sci. Adv. 3, e1700027 (2017).
(
10.1126/sciadv.1700027
) / Sci. Adv. by J Maire (2017) -
Sperling, L. H. Introduction to Physical Polymer Science (Wiley, 2005).
(
10.1002/0471757128
) -
Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012).
(
10.1103/PhysRevB.86.104307
) / Phys. Rev. B by J Liu (2012) -
Zhang, T. & Luo, T. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 112, 094304 (2012).
(
10.1063/1.4759293
) / J. Appl. Phys. by T Zhang (2012) -
Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).
(
10.1103/PhysRevLett.101.235502
) / Phys. Rev. Lett. by A Henry (2008) -
Zhang, T., Wu, X. & Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118, 21148–21159 (2014).
(
10.1021/jp5051639
) / J. Phys. Chem. C by T Zhang (2014) -
Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017).
(
10.1103/PhysRevLett.119.185901
) / Phys. Rev. Lett. by N Shulumba (2017) -
Wang, X., Kaviany, M. & Huang, B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017).
(
10.1039/C7NR06216H
) / Nanoscale by X Wang (2017) -
Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).
(
10.1021/ma400612y
) / Macromolecules by X Wang (2013) -
Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010).
(
10.1038/nnano.2010.27
) / Nat. Nanotechnol. by S Shen (2010) -
Shrestha, R. et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018).
(
10.1038/s41467-018-03978-3
) / Nat. Commun. by R Shrestha (2018) -
Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).
(
10.1038/s41467-019-09697-7
) / Nat. Commun. by Y Xu (2019) -
Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).
(
10.1038/nnano.2014.44
) / Nat. Nanotechnol. by V Singh (2014) -
Ronca, S., Igarashi, T., Forte, G. & Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123, 203–210 (2017).
(
10.1016/j.polymer.2017.07.027
) / Polymer by S Ronca (2017) -
Zhu, B. et al. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2, 3931–3944 (2017).
(
10.1021/acsomega.7b00563
) / ACS Omega by B Zhu (2017) -
Smith, M. K., Singh, V., Kalaitzidou, K. & Cola, B. A. Poly(3-hexylthiophene) nanotube array surfaces with tunable wetting and contact thermal energy transport. ACS Nano 9, 1080–1088 (2015).
(
10.1021/nn5027406
) / ACS Nano by MK Smith (2015) -
Lu, C. et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115, 52–59 (2017).
(
10.1016/j.polymer.2017.02.024
) / Polymer by C Lu (2017) -
Kurabayashi, K., Asheghi, M. & Goodson, K. E. Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999).
(
10.1109/84.767114
) / J. Microelectromech. Syst. by K Kurabayashi (1999) -
Wei, X., Zhang, T. & Luo, T. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions. Phys. Chem. Chem. Phys. 18, 32146–32154 (2016).
(
10.1039/C6CP06643G
) / Phys. Chem. Chem. Phys. by X Wei (2016) -
Shanker, A. et al. High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 3, e1700342 (2017).
(
10.1126/sciadv.1700342
) / Sci. Adv. by A Shanker (2017) -
Xie, X. et al. High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017).
(
10.1103/PhysRevB.95.035406
) / Phys. Rev. B by X Xie (2017) -
Xu, Y. et al. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4, eaar3031 (2018).
(
10.1126/sciadv.aar3031
) / Sci. Adv. by Y Xu (2018) -
Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).
(
10.1038/nmat4141
) / Nat. Mater. by GH Kim (2015) -
Miyazaki, Y., Nishiyama, T., Takahashi, H., Ktagiri, J.-I. & Takezawa, Y., Development of highly thermoconductive epoxy composites. In 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena 638–641 (IEEE, 2009).
(
10.1109/CEIDP.2009.5377902
) -
Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).
(
10.1038/s41586-019-1420-z
) / Nature by L Cui (2019) -
Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).
(
10.1126/science.1145220
) / Science by Z Wang (2007) -
Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).
(
10.1038/natrevmats.2016.50
) -
Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).
(
10.1103/PhysRevLett.110.015902
) / Phys. Rev. Lett. by JC Duda (2013) -
Liu, J. et al. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. Nano Lett. 13, 5594–5599 (2013).
(
10.1021/nl403244s
) / Nano Lett. by J Liu (2013) -
Ong, W.-L. & Malen, J. A. Thermal transport in nanostructured organic-inorganic hybrid materials. Annu. Rev. Heat. Transf. 19, 67–126 (2016).
(
10.1615/AnnualRevHeatTransfer.2016014222
) / Annu. Rev. Heat. Transf. by W-L Ong (2016) -
Yang, J. et al. Solution-processable superatomic thin-films. J. Am. Chem. Soc. 141, 10967–10971 (2019).
(
10.1021/jacs.9b04705
) / J. Am. Chem. Soc. by J Yang (2019) -
Li, R., Lee, E. & Luo, T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases. Mater. Today Phys. 12, 100181 (2019).
(
10.1016/j.mtphys.2020.100181
) / Mater. Today Phys. by R Li (2019) -
Qian, X., Peng, S., Li, X., Wei, Y. & Yang, R. Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. Mater. Today Phys. 10, 100140 (2019).
(
10.1016/j.mtphys.2019.100140
) / Mater. Today Phys. by X Qian (2019) -
Ju, S. et al. Designing nanostructures for phonon transport via bayesian optimization. Phys. Rev. 7, 021024 (2017).
(
10.1103/PhysRevX.7.021024
) / Phys. Rev. by S Ju (2017) -
Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).
(
10.1038/s41524-019-0203-2
) / npj Comput. Mater. by S Wu (2019) -
Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. 4, 011019 (2014).
(
10.1103/PhysRevX.4.011019
) / Phys. Rev. by J Carrete (2014) -
Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).
(
10.1038/ncomms5035
) / Nat. Commun. by J Cho (2014) -
Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).
(
10.1038/s41565-018-0227-7
) / Nat. Nanotechnol. by JA Tomko (2018) -
Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).
(
10.1021/nl504505t
) / Nano Lett. by JF Ihlefeld (2015) -
Shin, J. et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl Acad. Sci. USA 116, 5973–5978 (2019).
(
10.1073/pnas.1817082116
) / Proc. Natl Acad. Sci. USA by J Shin (2019) -
Lu, Q. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020).
(
10.1038/s41563-020-0612-0
) / Nat. Mater. by Q Lu (2020) -
Menyhart, K. & Krarti, M. Potential energy savings from deployment of dynamic insulation materials for US residential buildings. Build. Environ. 114, 203–218 (2017).
(
10.1016/j.buildenv.2016.12.009
) / Build. Environ. by K Menyhart (2017) -
Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018).
(
10.1038/s41560-018-0243-8
) / Nat. Energy by M Hao (2018) -
Lyeo, H.-K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006).
(
10.1063/1.2359354
) / Appl. Phys. Lett. by H-K Lyeo (2006) -
Caccia, M. et al. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature 562, 406–409 (2018).
(
10.1038/s41586-018-0593-1
) / Nature by M Caccia (2018) -
Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058–A1069 (1964).
(
10.1103/PhysRev.134.A1058
) / Phys. Rev. by CJ Glassbrenner (1964) -
Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomie yibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999).
(
10.1080/13642819908223054
) / Philos. Mag. B by PB Allen (1999) -
Pompe, G. & Hegenbarth, E. Thermal conductivity of amorphous Si at low temperatures. Phys. Status Solidi B 47, 103–108 (1988).
(
10.1002/pssb.2221470109
) / Phys. Status Solidi B by G Pompe (1988) -
Cahill, D. G., Fischer, H. E., Klitsner, T., Swartz, E. T. & Pohl, R. O. Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
(
10.1116/1.576265
) / J. Vac. Sci. Technol. A by DG Cahill (1989) -
Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077–6081 (1994).
(
10.1103/PhysRevB.50.6077
) / Phys. Rev. B by DG Cahill (1994) -
McGaughey, A. J. H., Jain, A. & Kim, H.-Y. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).
(
10.1063/1.5064602
) / J. Appl. Phys. by AJH McGaughey (2019) -
Shiomi, J., Esfarjani, K. & Chen, G. Thermal conductivity of half-Heusler compounds from first-principles calculations. Phys. Rev. B 84, 104302 (2011).
(
10.1103/PhysRevB.84.104302
) / Phys. Rev. B by J Shiomi (2011) -
Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013).
(
10.1103/PhysRevLett.110.025901
) / Phys. Rev. Lett. by JA Johnson (2013) -
Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).
(
10.1038/nnano.2015.109
) / Nat. Nanotechnol. by Y Hu (2015) -
Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).
(
10.1126/science.aaz6149
) / Science by K Chen (2020) -
Morelli, D. T. & Slack, G. A. in High Thermal Conductivity Materials (eds Shindé, S. L. & Goela, J. S.) Ch. 2, 37–68 (Springer, 2005).
(
10.1007/0-387-25100-6_2
) -
Dames, C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science 361, 549–550 (2018).
(
10.1126/science.aau4793
) / Science by C Dames (2018) -
Giri, A. & Hopkins, P. Achieving a better heat conductor. Nat. Mater. 19, 481–490 (2020).
(
10.1038/s41563-020-0658-z
) / Nat. Mater. by A Giri (2020) -
Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).
(
10.1021/acs.nanolett.7b03437
) / Nano Lett. by JS Kang (2017) -
Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017).
(
10.1016/j.mtphys.2017.12.005
) / Mater. Today Phys. by X Qian (2017) -
Cuffe, J. et al. Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015).
(
10.1103/PhysRevB.91.245423
) / Phys. Rev. B by J Cuffe (2015) -
Liu, W. & Asheghi, M. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat. Transf. 128, 75–83 (2006).
(
10.1115/1.2130403
) / J. Heat. Transf. by W Liu (2006) -
Asheghi, M., Leung, Y. K., Wong, S. S. & Goodson, K. E. Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997).
(
10.1063/1.119402
) / Appl. Phys. Lett. by M Asheghi (1997) -
Goodson, K. E. & Ju, Y. S. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999).
(
10.1146/annurev.matsci.29.1.261
) / Annu. Rev. Mater. Sci. by KE Goodson (1999) -
Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).
(
10.1063/1.1616981
) / Appl. Phys. Lett. by D Li (2003) -
Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004).
(
10.1063/1.1631734
) / J. Appl. Phys. by C Dames (2004) -
Choy, C. L., Wong, Y. W., Yang, G. W. & Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. B 37, 3359–3367 (1999).
(
10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S
) / J. Polym. Sci. B by CL Choy (1999) -
Piraux, L., Kinany-Alaoui, M., Issi, J. P., Begin, D. & Billaud, D. Thermal conductivity of an oriented polyacetylene film. Solid State Commun. 79, 427–429 (1989).
(
10.1016/0038-1098(89)91073-9
) / Solid State Commun. by L Piraux (1989) -
Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).
(
10.1080/14786437208229210
) / Philos. Mag. by PW Anderson (1972) -
Cahill, D., Watson, S. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).
(
10.1103/PhysRevB.46.6131
) / Phys. Rev. B by D Cahill (1992) -
Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).
(
10.1103/PhysRevB.88.075310
) / Phys. Rev. B by X Wang (2013) -
Chen, Z. & Dames, C. An anisotropic model for the minimum thermal conductivity. Appl. Phys. Lett. 107, 193104 (2015).
(
10.1063/1.4935467
) / Appl. Phys. Lett. by Z Chen (2015) -
Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).
(
10.1103/PhysRevB.43.7231
) / Phys. Rev. B by P Giannozzi (1991) -
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).
(
10.1093/acprof:oso/9780198507796.001.0001
) -
Debernardi, A., Baroni, S. & Molinari, E. Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819–1822 (1995).
(
10.1103/PhysRevLett.75.1819
) / Phys. Rev. Lett. by A Debernardi (1995) -
Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).
(
10.1016/j.cpc.2014.02.015
) / Comput. Phys. Commun. by W Li (2014) -
Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).
(
10.1103/PhysRevB.87.035437
) / Phys. Rev. B by F Yang (2013) - Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) Ch. 42 (Taylor & Francis, 2006).
-
Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).
(
10.1103/PhysRevB.84.085204
) / Phys. Rev. B by K Esfarjani (2011) -
Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).
(
10.1038/ncomms7290
) / Nat. Commun. by S Lee (2015) -
Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).
(
10.1038/ncomms7400
) / Nat. Commun. by A Cepellotti (2015) -
Mingo, N., Hauser, D., Kobayashi, N. P., Plissonier, M. & Shakouri, A. ‘Nanoparticle-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009).
(
10.1021/nl8031982
) / Nano Lett. by N Mingo (2009) -
Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015).
(
10.1103/PhysRevB.92.054301
) / Phys. Rev. B by T Tadano (2015) -
Liao, B. et al. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015).
(
10.1103/PhysRevLett.114.115901
) / Phys. Rev. Lett. by B Liao (2015) -
Zhou, J. et al. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Proc. Natl Acad. Sci. USA 112, 14777–14782 (2015).
(
10.1073/pnas.1512328112
) / Proc. Natl Acad. Sci. USA by J Zhou (2015) -
Cahill, D. G. & Pohl, R. O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987).
(
10.1103/PhysRevB.35.4067
) / Phys. Rev. B by DG Cahill (1987) -
Dames, C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat. Transf. 16, 7–49 (2013).
(
10.1615/AnnualRevHeatTransfer.v16.20
) / Annu. Rev. Heat. Transf. by C Dames (2013) -
Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).
(
10.1063/1.1819431
) / Rev. Sci. Instrum. by DG Cahill (2004) -
Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).
(
10.1063/1.3212673
) / Rev. Sci. Instrum. by AJ Schmidt (2009) -
Maznev, A. A., Johnson, J. A. & Nelson, K. A. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011).
(
10.1103/PhysRevB.84.195206
) / Phys. Rev. B by AA Maznev (2011) -
Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018).
(
10.1063/1.5046944
) / J. Appl. Phys. by P Jiang (2018) -
Qian, X., Ding, Z., Shin, J., Schmidt, A. J. & Chen, G. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Rev. Sci. Instrum. 91, 064903 (2020).
(
10.1063/5.0003770
) / Rev. Sci. Instrum. by X Qian (2020) -
Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).
(
10.1103/PhysRevB.76.075207
) / Phys. Rev. B by YK Koh (2007) -
Hua, C., Chen, X., Ravichandran, N. K. & Minnich, A. J. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Phys. Rev. B 95, 205423 (2017).
(
10.1103/PhysRevB.95.205423
) / Phys. Rev. B by C Hua (2017) -
Liao, B., Maznev, A. A., Nelson, K. A. & Chen, G. Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature. Nat. Commun. 7, 13174 (2016).
(
10.1038/ncomms13174
) / Nat. Commun. by B Liao (2016) -
Zhou, J. et al. Direct observation of large electron-phonon interaction effect on phonon heat transport. Nat. Commun. 11, 6040 (2020).
(
10.1038/s41467-020-19938-9
) / Nat. Commun. by J Zhou (2020)
Dates
Type | When |
---|---|
Created | 4 years, 5 months ago (March 8, 2021, 12:02 p.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 2:39 p.m.) |
Indexed | 8 minutes ago (Aug. 21, 2025, 3:05 a.m.) |
Issued | 4 years, 5 months ago (March 8, 2021) |
Published | 4 years, 5 months ago (March 8, 2021) |
Published Online | 4 years, 5 months ago (March 8, 2021) |
Published Print | 3 years, 11 months ago (Sept. 1, 2021) |
Funders
2
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
Awards
1
- DE-FG02-02ER45977
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
2
- CBET 1851052
- DMR-1419807
@article{Qian_2021, title={Phonon-engineered extreme thermal conductivity materials}, volume={20}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/s41563-021-00918-3}, DOI={10.1038/s41563-021-00918-3}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Qian, Xin and Zhou, Jiawei and Chen, Gang}, year={2021}, month=mar, pages={1188–1202} }