Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Li, W., Lu, X., Dubey, S., Devenica, L., & Srivastava, A. (2020). Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 19(6), 624–629.

Authors 5
  1. Weijie Li (first)
  2. Xin Lu (additional)
  3. Sudipta Dubey (additional)
  4. Luka Devenica (additional)
  5. Ajit Srivastava (additional)
References 45 Referenced 159
  1. Chernikov, A. et al. Exciton binding energy and non-hydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014). (10.1103/PhysRevLett.113.076802) / Phys. Rev. Lett. by A Chernikov (2014)
  2. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014). (10.1103/PhysRevLett.113.026803) / Phys. Rev. Lett. by K He (2014)
  3. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). (10.1038/ncomms7242) / Nat. Commun. by P Rivera (2015)
  4. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). (10.1038/s41586-019-0975-z) / Nature by K Tran (2019)
  5. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016). (10.1126/science.aac7820) / Science by P Rivera (2016)
  6. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014). (10.1038/ncomms5555) / Nat. Commun. by MM Fogler (2014)
  7. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005). (10.1038/nature03804) / Nature by KM Birnbaum (2005)
  8. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008). (10.1038/nphys1078) / Nat. Phys. by A Faraon (2008)
  9. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997). (10.1103/PhysRevLett.79.1467) / Phys. Rev. Lett. by A Imamoğlu (1997)
  10. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014). (10.1038/nphoton.2014.192) / Nat. Photon. by DE Chang (2014)
  11. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). (10.1103/RevModPhys.85.299) / Rev. Mod. Phys. by I Carusotto (2013)
  12. Chang, D. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nat. Phys. 4, 884–889 (2008). (10.1038/nphys1074) / Nat. Phys. by D Chang (2008)
  13. Lukin, M. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001). (10.1103/PhysRevLett.87.037901) / Phys. Rev. Lett. by M Lukin (2001)
  14. Rabl, P. & Zoller, P. Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A. 76, 042308 (2007). (10.1103/PhysRevA.76.042308) / Phys. Rev. A. by P Rabl (2007)
  15. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009). (10.1088/0034-4885/72/12/126401) / Rep. Prog. Phys. by T Lahaye (2009)
  16. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019). (10.1038/s41566-018-0325-y) / Nat. Photon. by A Ciarrocchi (2019)
  17. Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017). (10.1088/2053-1583/aa7352) / 2D Mater. by P Nagler (2017)
  18. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015). (10.1038/nnano.2015.60) / Nat. Nanotechnol. by A Srivastava (2015)
  19. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). (10.1038/nnano.2015.67) / Nat. Nanotechnol. by M Koperski (2015)
  20. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015). (10.1038/nnano.2015.79) / Nat. Nanotechnol. by C Chakraborty (2015)
  21. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015). (10.1038/nnano.2015.75) / Nat. Nanotechnol. by Y-M He (2015)
  22. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015). (10.1364/OPTICA.2.000347) / Optica by P Tonndorf (2015)
  23. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018). (10.1038/s41578-018-0008-9) / Nat. Rev. Mater. by M Atatüre (2018)
  24. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016). (10.1038/nphoton.2016.186) / Nat. Photon. by I Aharonovich (2016)
  25. Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019). (10.1038/s41565-019-0394-1) / Nat. Nanotechnol. by X Lu (2019)
  26. Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019). (10.1038/s41565-019-0402-5) / Nat. Nanotechnol by M Brotons-Gisbert (2019)
  27. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  28. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010). (10.1103/RevModPhys.82.2313) / Rev. Mod. Phys. by M Saffman (2010)
  29. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018). (10.1038/s41565-018-0193-0) / Nat. Nanotechnol. by P Rivera (2018)
  30. Schaibley, J. R. et al. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 7, 13747 (2016). (10.1038/ncomms13747) / Nat. Commun. by JR Schaibley (2016)
  31. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016). (10.1063/1.4945268) / Appl. Phys. Lett. by A Branny (2016)
  32. Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018). (10.1021/acs.nanolett.7b03667) / Nano Lett. by Z Wang (2018)
  33. He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016). (10.1038/ncomms13409) / Nat. Commun. by Y-M He (2016)
  34. Schinner, G. J. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells. Phys. Rev. Lett. 110, 127403 (2013). (10.1103/PhysRevLett.110.127403) / Phys. Rev. Lett. by GJ Schinner (2013)
  35. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018). (10.1103/PhysRevLett.121.026402) / Phys. Rev. Lett. by F Wu (2018)
  36. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013). (10.1073/pnas.1309394110) / Proc. Natl Acad. Sci. USA by JS Alden (2013)
  37. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). (10.1126/sciadv.1701696) / Sci. Adv. by H Yu (2017)
  38. Wu, F., Lovorn, T. & MacDonald, A. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B. 97, 035306 (2018). (10.1103/PhysRevB.97.035306) / Phys. Rev. B. by F Wu (2018)
  39. Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018). (10.1038/s41565-018-0275-z) / Nat. Nanotechnol. by Y Luo (2018)
  40. Tripathi, L. N. et al. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919–1926 (2018). (10.1021/acsphotonics.7b01053) / ACS Photonics by LN Tripathi (2018)
  41. Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018). (10.1021/acsphotonics.8b00580) / ACS Photonics by T Cai (2018)
  42. Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018). (10.1103/PhysRevLett.121.033902) / Phys. Rev. Lett. by D Huber (2018)
  43. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). (10.1038/s41586-019-0986-9) / Nature by EM Alexeev (2019)
  44. Hsu, W.-T. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 5, eaax7407 (2019). (10.1126/sciadv.aax7407) / Sci. Adv. by W-T Hsu (2019)
  45. Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. Preprint at https://arxiv.org/abs/1907.08815 (2019). (10.1117/12.2548196)
Dates
Type When
Created 5 years, 4 months ago (April 13, 2020, 12:02 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 4:11 p.m.)
Indexed 22 hours, 3 minutes ago (Aug. 21, 2025, 1:15 p.m.)
Issued 5 years, 4 months ago (April 13, 2020)
Published 5 years, 4 months ago (April 13, 2020)
Published Online 5 years, 4 months ago (April 13, 2020)
Published Print 5 years, 2 months ago (June 1, 2020)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards2
    1. EFMA-1741691
    2. DMR-1905809

@article{Li_2020, title={Dipolar interactions between localized interlayer excitons in van der Waals heterostructures}, volume={19}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/s41563-020-0661-4}, DOI={10.1038/s41563-020-0661-4}, number={6}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Li, Weijie and Lu, Xin and Dubey, Sudipta and Devenica, Luka and Srivastava, Ajit}, year={2020}, month=apr, pages={624–629} }