Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Andersen, T. I., Scuri, G., Sushko, A., De Greve, K., Sung, J., Zhou, Y., Wild, D. S., Gelly, R. J., Heo, H., Bérubé, D., Joe, A. Y., Jauregui, L. A., Watanabe, K., Taniguchi, T., Kim, P., Park, H., & Lukin, M. D. (2021). Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nature Materials, 20(4), 480–487.

Authors 17
  1. Trond I. Andersen (first)
  2. Giovanni Scuri (additional)
  3. Andrey Sushko (additional)
  4. Kristiaan De Greve (additional)
  5. Jiho Sung (additional)
  6. You Zhou (additional)
  7. Dominik S. Wild (additional)
  8. Ryan J. Gelly (additional)
  9. Hoseok Heo (additional)
  10. Damien Bérubé (additional)
  11. Andrew Y. Joe (additional)
  12. Luis A. Jauregui (additional)
  13. Kenji Watanabe (additional)
  14. Takashi Taniguchi (additional)
  15. Philip Kim (additional)
  16. Hongkun Park (additional)
  17. Mikhail D. Lukin (additional)
References 56 Referenced 156
  1. Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017). (10.1038/nature22362) / Nature by A Mazurenko (2017)
  2. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  3. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017). (10.1103/PhysRevLett.119.023603) / Phys. Rev. Lett. by J Perczel (2017)
  4. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019). (10.1103/PhysRevLett.122.086402) / Phys. Rev. Lett. by F Wu (2019)
  5. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020). (10.1038/s41567-020-0845-5) / Nat. Phys. by R Bekenstein (2020)
  6. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018). (10.1103/PhysRevLett.121.026402) / Phys. Rev. Lett. by F Wu (2018)
  7. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). (10.1126/sciadv.1701696) / Sci. Adv. by H Yu (2017)
  8. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). (10.1038/s41586-019-0957-1) / Nature by KL Seyler (2019)
  9. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). (10.1038/s41586-019-0975-z) / Nature by K Tran (2019)
  10. Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020). (10.1038/s41563-020-0661-4) / Nat. Mater. by W Li (2020)
  11. Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020). (10.1038/s41563-020-0687-7) / Nat. Mater. by M Brotons-Gisbert (2020)
  12. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). (10.1038/s41586-019-0986-9) / Nature by EM Alexeev (2019)
  13. Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018). (10.1021/acs.nanolett.8b03266) / Nano Lett. by N Zhang (2018)
  14. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). (10.1038/s41586-019-0976-y) / Nature by C Jin (2019)
  15. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020). (10.1038/s41563-020-0708-6) / Nat. Mater. by L Wang (2020)
  16. Schrade, C. & Fu, L. Spin-valley density wave in moiré materials. Phys. Rev. B 100, 035413 (2019). (10.1103/PhysRevB.100.035413) / Phys. Rev. B by C Schrade (2019)
  17. Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020). (10.1103/PhysRevLett.124.217403) / Phys. Rev. Lett. by G Scuri (2020)
  18. Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Preprint at https://arxiv.org/abs/2004.02964 (2020). (10.21203/rs.3.rs-125590/v1)
  19. Kerelsky, A. et al. Moiré-less correlations in ABCA graphene. Preprint at https://arxiv.org/abs/1911.00007 (2019).
  20. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020). (10.1038/s41565-020-0708-3) / Nat. Nanotechnol. by LJ McGilly (2020)
  21. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020). (10.1038/s41565-020-0682-9) / Nat. Nanotechnol. by A Weston (2020)
  22. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019). (10.1038/s41467-019-12778-2) / Nat. Commun. by L Xiong (2019)
  23. Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron Backscatter Diffraction in Materials Science Vol. 2 (Springer, 2009). (10.1007/978-0-387-88136-2)
  24. Coates, D. Kikuchi-like reflection patterns obtained with the scanning electron microscope. Phil. Mag. A 16, 1179–1184 (1967). (10.1080/14786436708229968) / Phil. Mag. A by D Coates (1967)
  25. Ashida, K., Kajino, T., Kutsuma, Y., Ohtani, N. & Kaneko, T. Crystallographic orientation dependence of SEM contrast revealed by SiC polytypes. J. Vac. Sci. Technol. B 33, 04E104 (2015). (10.1116/1.4927136) / J. Vac. Sci. Technol. B by K Ashida (2015)
  26. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). (10.1038/s41586-019-1393-y) / Nature by G Chen (2019)
  27. Martin, I., Blanter, Y. M. & Morpurgo, A. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008). (10.1103/PhysRevLett.100.036804) / Phys. Rev. Lett. by I Martin (2008)
  28. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015). (10.1038/nature14364) / Nature by L Ju (2015)
  29. Vaezi, A., Liang, Y., Ngai, D. H., Yang, L. & Kim, E.-A. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. 3, 021018 (2013). (10.1103/PhysRevX.3.021018) / Phys. Rev. by A Vaezi (2013)
  30. Joy, D., Prasad, M. & Meyer, H. III Experimental secondary electron spectra under SEM conditions. J. Microsc. 215, 77–85 (2004). (10.1111/j.0022-2720.2004.01345.x) / J. Microsc. by D Joy (2004)
  31. Mak, K. F., Shan, J. & Heinz, T. F. Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010). (10.1103/PhysRevLett.104.176404) / Phys. Rev. Lett. by KF Mak (2010)
  32. Nguyen, T. A., Lee, J.-U., Yoon, D. & Cheong, H. Excitation energy dependent Raman signatures of ABA- and ABC-stacked few-layer graphene. Sci. Rep. 4, 4630 (2014). (10.1038/srep04630) / Sci. Rep. by TA Nguyen (2014)
  33. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019). (10.1038/s41563-019-0346-z) / Nat. Mater. by H Yoo (2019)
  34. Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018). (10.1103/PhysRevB.98.224102) / Phys. Rev. B by S Carr (2018)
  35. van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014). (10.1021/nl501077m) / Nano Lett. by AM van der Zande (2014)
  36. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018). (10.1103/PhysRevLett.120.037402) / Phys. Rev. Lett. by G Scuri (2018)
  37. Dibos, A. M. et al. Electrically tunable exciton–plasmon coupling in a WSe2 monolayer embedded in a plasmonic crystal cavity. Nano Lett. 19, 3543–3547 (2019). (10.1021/acs.nanolett.9b00484) / Nano Lett. by AM Dibos (2019)
  38. Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018). (10.1038/s41567-018-0123-y) / Nat. Phys. by J Kunstmann (2018)
  39. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). (10.1038/ncomms5966) / Nat. Commun. by K Liu (2014)
  40. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). (10.1103/PhysRevLett.118.147401) / Phys. Rev. Lett. by F Wu (2017)
  41. Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017). (10.1103/PhysRevB.95.115429) / Phys. Rev. B by Y Wang (2017)
  42. Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020). (10.1039/D0NR02160A) / Nanoscale by S Brem (2020)
  43. Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014). (10.1038/nphys2848) / Nat. Phys. by AM Jones (2014)
  44. Cappelluti, E., Roldán, R., Silva-Guillén, J. A., Ordejón, P. & Guinea, F. Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2. Phys. Rev. B 88, 075409 (2013). (10.1103/PhysRevB.88.075409) / Phys. Rev. B by E Cappelluti (2013)
  45. Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12, 677–682 (2016). (10.1038/nphys3674) / Nat. Phys. by K Hao (2016)
  46. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–2011 (2012). (10.1038/nmat3505) / Nat. Mater. by KF Mak (2012)
  47. Kormányos, A., Zólyomi, V., Fal’ko, V. I. & Burkard, G. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B 98, 035408 (2018). (10.1103/PhysRevB.98.035408) / Phys. Rev. B by A Kormányos (2018)
  48. Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015). (10.1039/C4CS00301B) / Chem. Soc. Rev. by G-B Liu (2015)
  49. Nguyen, P. V. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 572, 220–223 (2019). (10.1038/s41586-019-1402-1) / Nature by PV Nguyen (2019)
  50. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018). (10.1103/PhysRevLett.120.207401) / Phys. Rev. Lett. by M Kulig (2018)
  51. Cadiz, F. et al. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl. Phys. Lett. 112, 152106 (2018). (10.1063/1.5026478) / Appl. Phys. Lett. by F Cadiz (2018)
  52. Pisoni, R. et al. Absence of interlayer tunnel coupling of K-valley electrons in bilayer MoS2. Phys. Rev. Lett. 123, 117702 (2019). (10.1103/PhysRevLett.123.117702) / Phys. Rev. Lett. by R Pisoni (2019)
  53. Hao, K. et al. Trion valley coherence in monolayer semiconductors. 2D Mater. 4, 025105 (2017). (10.1088/2053-1583/aa70f9) / 2D Mater. by K Hao (2017)
  54. Mandyam, S. V. et al. Controlled growth of large-area bilayer tungsten diselenides with lateral p–n junctions. ACS Nano 13, 10490–10498 (2019). (10.1021/acsnano.9b04453) / ACS Nano by SV Mandyam (2019)
  55. Lau, K. W., Calvin, Gong, Z., Yu, H. & Yao, W. Interface excitons at lateral heterojunctions in monolayer semiconductors. Phys. Rev. B 98, 115427 (2018). (10.1103/PhysRevB.98.115427) / Phys. Rev. B by KW Lau (2018)
  56. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). (10.1021/acs.nanolett.5b05263) / Nano Lett. by K Kim (2016)
Dates
Type When
Created 4 years, 7 months ago (Jan. 4, 2021, 12:07 p.m.)
Deposited 2 years, 6 months ago (Jan. 26, 2023, 10:05 p.m.)
Indexed 16 hours, 50 minutes ago (Aug. 21, 2025, 1:44 p.m.)
Issued 4 years, 7 months ago (Jan. 4, 2021)
Published 4 years, 7 months ago (Jan. 4, 2021)
Published Online 4 years, 7 months ago (Jan. 4, 2021)
Published Print 4 years, 4 months ago (April 1, 2021)
Funders 10
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards2
    1. PHY-1506284
    2. PHY-1125846
  2. Paul and Daisy Soros Fellowships for New Americans 10.13039/100006063

    Region: Americas

    pri (Other non-profit organizations)

    Labels6
    1. Paul & Daisy Soros Fellowships for New Americans
    2. P.D. Soros Fellowship for New Americans
    3. The Paul & Daisy Soros Fellowships for New Americans
    4. PD Soros Fellowships
    5. Paul & Daisy Soros Fellowships
    6. The Paul & Daisy Soros Fellowship
  3. Hertz Foundation 10.13039/100005883

    Region: Americas

    gov (Trusts, charities, foundations (both public and private))

    Labels4
    1. Fannie and John Hertz Foundation
    2. Fannie & John Hertz Foundation
    3. The Hertz Foundation
    4. HF
  4. Gordon and Betty Moore Foundation 10.13039/100000936

    Region: Americas

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Moore Foundation
    2. GORDON E. & BETTY I. MOORE FOUNDATION
    3. GORDON E. AND BETTY I. MOORE FOUNDATION
    4. Gordon & Betty Moore Foundation
    5. GBMF
    Awards1
    1. GBMF4543
  5. MEXT Elemental Strategy Initiative
  6. U.S. Department of Defense 10.13039/100000005

    Region: Americas

    gov (National government)

    Labels6
    1. United States Department of Defense
    2. Department of Defense
    3. U.S. Dept of Defense
    4. US Department of Defense
    5. DOD
    6. USDOD
    Awards2
    1. N00014-18-1-2877
    2. N00014-16-1-2825
  7. United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research 10.13039/100000181 Air Force Office of Scientific Research

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
    Awards1
    1. FA9550-17-1-0002
  8. United States Department of Defense | United States Navy | ONR | Office of Naval Research Global 10.13039/100007297 Office of Naval Research Global

    Region: Americas

    gov (National government)

    Labels3
    1. ONR Global
    2. U.S. Office of Naval Research Global
    3. ONRG
    Awards1
    1. N00014-15-1-2761
  9. Samsung 10.13039/100004358

    Region: Asia

    pri (For-profit companies (industry))

    Labels4
    1. Samsung Electronics
    2. Samsung Electronics Co., Ltd.
    3. Samsung Group
    4. 삼성
  10. United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory 10.13039/100006754 Army Research Laboratory

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. Army Research Laboratory
    2. US Army Research Laboratory
    3. United States Army Research Laboratory
    4. ARL
    Awards1
    1. W911NF1520067

@article{Andersen_2021, title={Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers}, volume={20}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/s41563-020-00873-5}, DOI={10.1038/s41563-020-00873-5}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Andersen, Trond I. and Scuri, Giovanni and Sushko, Andrey and De Greve, Kristiaan and Sung, Jiho and Zhou, You and Wild, Dominik S. and Gelly, Ryan J. and Heo, Hoseok and Bérubé, Damien and Joe, Andrew Y. and Jauregui, Luis A. and Watanabe, Kenji and Taniguchi, Takashi and Kim, Philip and Park, Hongkun and Lukin, Mikhail D.}, year={2021}, month=jan, pages={480–487} }