Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Zhu, X., Li, D., Liang, X., & Lu, W. D. (2018). Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nature Materials, 18(2), 141–148.

Authors 4
  1. Xiaojian Zhu (first)
  2. Da Li (additional)
  3. Xiaogan Liang (additional)
  4. Wei D. Lu (additional)
References 49 Referenced 571
  1. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014). (10.1038/nnano.2014.207) / Nat. Nanotech. by G Fiori (2014)
  2. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016). (10.1038/nphoton.2015.282) / Nat. Photon. by KF Mak (2016)
  3. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). (10.1038/natrevmats.2016.55) / Nat. Rev. Mater. by JR Schaibley (2016)
  4. Hong, J. et al. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional MoS2. Phys. Rev. B 93, 075440 (2016). (10.1103/PhysRevB.93.075440) / Phys. Rev. B by J Hong (2016)
  5. Gong, C. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 4, 1700231 (2017). (10.1002/advs.201700231) / Adv. Sci. by C Gong (2017)
  6. Jung, Y., Zhou, Y. & Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3, 452–463 (2016). (10.1039/C5QI00242G) / Inorg. Chem. Front. by Y Jung (2016)
  7. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). (10.1039/C5CS00151J) / Chem. Soc. Rev. by D Voiry (2015)
  8. Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014). (10.1021/ja501686w) / J. Am. Chem. Soc. by L Wang (2014)
  9. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). (10.1038/nchem.1589) / Nat. Chem. by M Chhowalla (2013)
  10. Sun, X., Wang, Z., Li, Z. & Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 6, 26666 (2016). (10.1038/srep26666) / Sci. Rep. by X Sun (2016)
  11. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014). (10.1038/nmat4080) / Nat. Mater. by R Kappera (2014)
  12. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015). (10.1126/science.aab3175) / Science by S Cho (2015)
  13. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014). (10.1038/nnano.2014.64) / Nat. Nanotech. by YC Lin (2014)
  14. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017). (10.1038/nphys4188) / Nat. Phys. by H Yang (2017)
  15. Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016). (10.1103/PhysRevB.93.125109) / Phys. Rev. B by DH Choe (2016)
  16. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017). (10.1038/nature24043) / Nature by Y Wang (2017)
  17. Ma, Y. et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9, 7383–7391 (2015). (10.1021/acsnano.5b02399) / ACS Nano by Y Ma (2015)
  18. Stephenson, T., Li, Z., Olsen, B. & Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014). (10.1039/C3EE42591F) / Energy Environ. Sci. by T Stephenson (2014)
  19. Xu, X., Liu, W., Kim, Y. & Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). (10.1016/j.nantod.2014.09.005) / Nano Today by X Xu (2014)
  20. Li, Y., Wu, D., Zhou, Z., Cabrera, C. R. & Chen, Z. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J. Phys. Chem. Lett. 3, 2221–2227 (2012). (10.1021/jz300792n) / J. Phys. Chem. Lett. by Y Li (2012)
  21. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013). (10.1073/pnas.1316792110) / Proc. Natl Acad. Sci. USA by H Wang (2013)
  22. Xia, J. et al. Phase evolution of lithium intercalation dynamics in 2H-MoS2. Nanoscale 9, 7533–7540 (2017). (10.1039/C7NR02028G) / Nanoscale by J Xia (2017)
  23. Xiong, F. et al. Li Intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015). (10.1021/acs.nanolett.5b02619) / Nano Lett. by F Xiong (2015)
  24. Leng, K. et al. Phase restructuring in transition metal dichalcogenides for highly stable energy storage. ACS Nano 10, 9208–9215 (2016). (10.1021/acsnano.6b05746) / ACS Nano by K Leng (2016)
  25. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). (10.1021/nl904092h) / Nano Lett. by SH Jo (2010)
  26. Du, G. et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46, 1106–1108 (2010). (10.1039/B920277C) / Chem. Commun. by G Du (2010)
  27. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011). (10.1016/j.surfrep.2010.10.001) / Surf. Sci. Rep. by W Melitz (2011)
  28. Wang, F. et al. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011). (10.1021/nn1028168) / ACS Nano by F Wang (2011)
  29. Rasamani, K. D., Alimohammadi, F. & Sun, Y. Interlayer-expanded MoS2. Mater. Today 20, 83–91 (2017). (10.1016/j.mattod.2016.10.004) / Mater. Today by KD Rasamani (2017)
  30. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013). (10.1038/ncomms2784) / Nat. Commun. by I Valov (2013)
  31. Park, G.-S. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat. Commun. 4, 2382 (2013). (10.1038/ncomms3382) / Nat. Commun. by GS Park (2013)
  32. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012). (10.1038/ncomms1737) / Nat. Commun. by Y Yang (2012)
  33. Fonseca, R. in Synaptic Tagging and Capture (ed. Sajikumar, S.) 29–44 (Springer, New York, 2015). (10.1007/978-1-4939-1761-7_3)
  34. Muller, D., Hefft, S. & Figurov, A. Heterosynaptic interactions between UP and LTD in CA1 hippocampal slices. Neuron 14, 599–605 (1995). (10.1016/0896-6273(95)90316-X) / Neuron by D Muller (1995)
  35. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M. & Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–588 (2000). (10.1038/35046067) / Nature by M Nishiyama (2000)
  36. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003). (10.1038/nature01530) / Nature by S Royer (2003)
  37. Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D. & Kandel, E. R. Is heterosynaptic modulation essential for stabilizing hebbian plasticity and memory. Nat. Rev. Neurosci. 1, 11–20 (2000). (10.1038/35036191) / Nat. Rev. Neurosci. by CH Bailey (2000)
  38. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017). (10.1038/nnano.2017.83) / Nat. Nanotech. by PM Sheridan (2017)
  39. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010). (10.1038/nature08940) / Nature by J Borghetti (2010)
  40. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotech. 10, 270–276 (2015). (10.1038/nnano.2014.323) / Nat. Nanotech. by Y Yu (2015)
  41. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018). (10.1002/adma.201800195) / Adv. Mater. by J Zhu (2018)
  42. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013). (10.1021/nl4013166) / Nano Lett. by K He (2013)
  43. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013). (10.1021/nl4014748) / Nano Lett. by HJ Conley (2013)
  44. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500 (2018). (10.1038/nature25747) / Nature by VK Sangwan (2018)
  45. Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). (10.1038/ncomms4158) / Nat. Commun. by LQ Zhu (2014)
  46. Yang, Y., Chen, B. & Lu, D. W. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015). (10.1002/adma.201503202) / Adv. Mater. by Y Yang (2015)
  47. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2016). (10.1038/nmat4756) / Nat. Mater. by Z Wang (2016)
  48. Zhu, X., Lee, J. & Lu, D. W. Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects. Adv. Mater. 29, 1700527 (2017). (10.1002/adma.201700527) / Adv. Mater. by X Zhu (2017)
  49. Zhu, X., Du, C., Jeong, Y. & Lu, D. W. Emulation of synaptic metaplasticity in memristors. Nanoscale 9, 45–51 (2017). (10.1039/C6NR08024C) / Nanoscale by X Zhu (2017)
Dates
Type When
Created 6 years, 8 months ago (Nov. 29, 2018, 7:43 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:30 p.m.)
Indexed 46 minutes ago (Aug. 21, 2025, 2:29 a.m.)
Issued 6 years, 8 months ago (Dec. 17, 2018)
Published 6 years, 8 months ago (Dec. 17, 2018)
Published Online 6 years, 8 months ago (Dec. 17, 2018)
Published Print 6 years, 6 months ago (Feb. 1, 2019)
Funders 0

None

@article{Zhu_2018, title={Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing}, volume={18}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/s41563-018-0248-5}, DOI={10.1038/s41563-018-0248-5}, number={2}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Zhu, Xiaojian and Li, Da and Liang, Xiaogan and Lu, Wei D.}, year={2018}, month=dec, pages={141–148} }