Crossref
journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Authors
5
- Menglong Hao (first)
- Jian Li (additional)
- Saehong Park (additional)
- Scott Moura (additional)
- Chris Dames (additional)
References
43
Referenced
215
-
Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).
(
10.1038/nclimate2564
) / Nat. Clim. Change by B Nykvist (2015) -
Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).
(
10.1038/nmat4834
) / Nat. Mater. by S Chu (2017) -
Yuksel, T. & Michalek, J. J. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ. Sci. Technol. 49, 3974–3980 (2015).
(
10.1021/es505621s
) / Environ. Sci. Technol. by T Yuksel (2015) -
Wang, Q., Jiang, B., Li, B. & Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sust. Energ. Rev. 64, 106–128 (2016).
(
10.1016/j.rser.2016.05.033
) / Renew. Sust. Energ. Rev. by Q Wang (2016) - Pesaran, A. A., Santhanagopalan, S. & Kim, G. H. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications. 30th Int. Battery Seminar PR-5400-58145 (2013).
-
Keyser, M. et al. Enabling fast charging–battery thermal considerations. J. Power Sources 367, 228–236 (2017).
(
10.1016/j.jpowsour.2017.07.009
) / J. Power Sources by M Keyser (2017) -
Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).
(
10.1126/science.1241882
) / Science by M Ebner (2013) -
Leng, F., Tan, C. M. & Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 5, 12967 (2015).
(
10.1038/srep12967
) / Sci. Rep. by F Leng (2015) -
Jaguemont, J., Boulon, L. & Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 164, 99–114 (2016).
(
10.1016/j.apenergy.2015.11.034
) / Appl. Energy by J Jaguemont (2016) - Maximizing Battery Life and Lifespan (Apple, accessed 1 March 2018); https://www.apple.com/batteries/maximizing-performance
-
Arguez, A. et al. NOAA’s 1981–2010 US climate normals: an overview. Bull. Am. Meteor. Soc. 93, 1687–1697 (2012).
(
10.1175/BAMS-D-11-00197.1
) / Bull. Am. Meteor. Soc. by A Arguez (2012) -
Ji, Y. & Wang, C. Y. Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim. Acta 107, 664–674 (2013).
(
10.1016/j.electacta.2013.03.147
) / Electrochim. Acta by Y Ji (2013) -
Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515 (2016).
(
10.1038/nature16502
) / Nature by CY Wang (2016) -
Zhang, G. et al. Rapid restoration of electric vehicle battery performance while driving at cold temperatures. J. Power Sources 371, 35–40 (2017).
(
10.1016/j.jpowsour.2017.10.029
) / J. Power Sources by G Zhang (2017) -
Buford, K., Williams, J. & Simonini, M. Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System Report 0148-7191 (SAE Technical Paper, 2011).
(
10.4271/2011-01-0893
) -
Novak, K. S., Phillips, C. J., Sunada, E. T. & Kinsella, G. M. Mars Exploration Rover Surface Mission Flight Thermal Performance Report 0148-7191 (SAE Technical Paper, 2005).
(
10.4271/2005-01-2827
) - Ando, M., Shinozaki, K., Okamoto, A., Sugita, H. & Nohara, T. Development of mechanical heat switch for future space missions. Proc. 44th Int. Conf. Environ. Syst. (2014).
-
Shu, Q., Demko, J. & Fesmire, J. Heat switch technology for cryogenic thermal management. IOP Conference Series Mater. Sci. Engin. 012133 (IOP Publishing, 2017).
(
10.1088/1757-899X/278/1/012133
) -
Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).
(
10.1063/1.5001072
) / Appl. Phys. Rev. by G Wehmeyer (2017) -
Lyeo, H. K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006).
(
10.1063/1.2359354
) / Appl. Phys. Lett. by HK Lyeo (2006) -
Reifenberg, J. P. et al. Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl. Phys. Lett. 91, 111904 (2007).
(
10.1063/1.2784169
) / Appl. Phys. Lett. by JP Reifenberg (2007) -
Zhu, J. et al. Temperature-gated thermal rectifier for active heat flow control. Nano Lett. 14, 4867–4872 (2014).
(
10.1021/nl502261m
) / Nano Lett. by J Zhu (2014) -
Ito, K., Nishikawa, K., Iizuka, H. & Toshiyoshi, H. Experimental investigation of radiative thermal rectifier using vanadium dioxide. Appl. Phys. Lett. 105, 253503 (2014).
(
10.1063/1.4905132
) / Appl. Phys. Lett. by K Ito (2014) -
Ben-Abdallah, P. & Biehs, S. A. Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013).
(
10.1063/1.4829618
) / Appl. Phys. Lett. by P Ben-Abdallah (2013) -
Yang, J. et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotech. 7, 91–95 (2012).
(
10.1038/nnano.2011.216
) / Nat. Nanotech. by J Yang (2012) -
Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).
(
10.1038/ncomms5035
) / Nat. Commun. by J Cho (2014) -
Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).
(
10.1021/nl504505t
) / Nano Lett. by JF Ihlefeld (2015) -
Guo, L., Zhang, X., Huang, Y., Hu, R. & Liu, C. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor. Appl. Therm. Eng. 113, 1242–1249 (2017).
(
10.1016/j.applthermaleng.2016.11.102
) / Appl. Therm. Eng. by L Guo (2017) -
Marland, B., Bugby, D. & Stouffer, C. Development and testing of an advanced cryogenic thermal switch and cryogenic thermal switch test bed. Cryogenics 44, 413–420 (2004).
(
10.1016/j.cryogenics.2004.03.014
) / Cryogenics by B Marland (2004) -
Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).
(
10.1016/j.matdes.2013.11.084
) / Mater. Des. by JM Jani (2014) -
Jain, A. & Goodson, K. E. Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J. Heat Transfer 130, 102402 (2008).
(
10.1115/1.2945904
) / J. Heat Transfer by A Jain (2008) -
Yovanovich, M. M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Components Packaging Technol 28, 182–206 (2005).
(
10.1109/TCAPT.2005.848483
) / IEEE Trans. Components Packaging Technol by MM Yovanovich (2005) -
Tso, C. Y. & Chao, C. Y. Solid-state thermal diode with shape memory alloys. Int. J. Heat Mass Transfer 93, 605–611 (2016).
(
10.1016/j.ijheatmasstransfer.2015.10.045
) / Int. J. Heat Mass Transfer by CY Tso (2016) - Saums, D. ASTM D 5470-06 Thermal Interface Material Test Stand (DS&A LLC, 2006).
-
Hao, M., Saviers, K. R. & Fisher, T. S. Design and validation of a high-temperature thermal interface resistance measurement system. J. Therm. Sci. Eng. Appl. 8, 031008 (2016).
(
10.1115/1.4033011
) / J. Therm. Sci. Eng. Appl. by M Hao (2016) -
Aceves, S. M., Berry, G. D., Martinez-Frias, J. & Espinosa-Loza, F. Vehicular storage of hydrogen in insulated pressure vessels. Int. J. Hydrogen Energy 31, 2274–2283 (2006).
(
10.1016/j.ijhydene.2006.02.019
) / Int. J. Hydrogen Energy by SM Aceves (2006) -
Kuze, Y., Kobayashi, H., Ichinose, H. & Otsuka, T. Development of New Generation Hybrid System (THS II)-Development of Toyota Coolant Heat Storage System Report 0148-7191 (SAE Technical Paper, 2004).
(
10.4271/2004-01-0643
) -
Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T. & Miyazaki, S. Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Mater. Sci. Eng. A 202, 148–156 (1995).
(
10.1016/0921-5093(95)09801-1
) / Mater. Sci. Eng. A by B Strnadel (1995) -
Santhanagopalan, S., Zhang, Q., Kumaresan, K. & White, R. E. Parameter estimation and life modeling of lithium-ion cells. J. Electrochem. Soc. 155, A345–A353 (2008).
(
10.1149/1.2839630
) / J. Electrochem. Soc. by S Santhanagopalan (2008) -
Ramadass, P., Haran, B., Gomadam, P. M., White, R. & Popov, B. N. Development of first principles capacity fade model for Li-ion cells. J. Electrochem. Soc. 151, A196–A203 (2004).
(
10.1149/1.1634273
) / J. Electrochem. Soc. by P Ramadass (2004) - Panasonic 18650PF Specifications (Panasonic, accessed 20 July 2018); https://industrial.panasonic.com/ww/products/batteries/secondary-batteries/lithium-ion/cylindrical-type
-
Millner, A. Modeling lithium ion battery degradation in electric vehicles. In Proc. 2010 IEEE Conference Innovative Technol. Efficient Reliable Electricity Supply (CITRES) 349–356 (IEEE, 2010).
(
10.1109/CITRES.2010.5619782
)
Dates
Type | When |
---|---|
Created | 6 years, 10 months ago (Sept. 28, 2018, 7:10 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 20, 2022, 6:59 p.m.) |
Indexed | 1 day, 16 hours ago (Aug. 20, 2025, 8:44 a.m.) |
Issued | 6 years, 10 months ago (Oct. 1, 2018) |
Published | 6 years, 10 months ago (Oct. 1, 2018) |
Published Online | 6 years, 10 months ago (Oct. 1, 2018) |
@article{Hao_2018, title={Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy}, volume={3}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/s41560-018-0243-8}, DOI={10.1038/s41560-018-0243-8}, number={10}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Hao, Menglong and Li, Jian and Park, Saehong and Moura, Scott and Dames, Chris}, year={2018}, month=oct, pages={899–906} }