Crossref journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Bibliography

Hao, M., Li, J., Park, S., Moura, S., & Dames, C. (2018). Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nature Energy, 3(10), 899–906.

Authors 5
  1. Menglong Hao (first)
  2. Jian Li (additional)
  3. Saehong Park (additional)
  4. Scott Moura (additional)
  5. Chris Dames (additional)
References 43 Referenced 215
  1. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). (10.1126/science.1212741) / Science by B Dunn (2011)
  2. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015). (10.1038/nclimate2564) / Nat. Clim. Change by B Nykvist (2015)
  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017). (10.1038/nmat4834) / Nat. Mater. by S Chu (2017)
  4. Yuksel, T. & Michalek, J. J. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ. Sci. Technol. 49, 3974–3980 (2015). (10.1021/es505621s) / Environ. Sci. Technol. by T Yuksel (2015)
  5. Wang, Q., Jiang, B., Li, B. & Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sust. Energ. Rev. 64, 106–128 (2016). (10.1016/j.rser.2016.05.033) / Renew. Sust. Energ. Rev. by Q Wang (2016)
  6. Pesaran, A. A., Santhanagopalan, S. & Kim, G. H. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications. 30th Int. Battery Seminar PR-5400-58145 (2013).
  7. Keyser, M. et al. Enabling fast charging–battery thermal considerations. J. Power Sources 367, 228–236 (2017). (10.1016/j.jpowsour.2017.07.009) / J. Power Sources by M Keyser (2017)
  8. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013). (10.1126/science.1241882) / Science by M Ebner (2013)
  9. Leng, F., Tan, C. M. & Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 5, 12967 (2015). (10.1038/srep12967) / Sci. Rep. by F Leng (2015)
  10. Jaguemont, J., Boulon, L. & Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 164, 99–114 (2016). (10.1016/j.apenergy.2015.11.034) / Appl. Energy by J Jaguemont (2016)
  11. Maximizing Battery Life and Lifespan (Apple, accessed 1 March 2018); https://www.apple.com/batteries/maximizing-performance
  12. Arguez, A. et al. NOAA’s 1981–2010 US climate normals: an overview. Bull. Am. Meteor. Soc. 93, 1687–1697 (2012). (10.1175/BAMS-D-11-00197.1) / Bull. Am. Meteor. Soc. by A Arguez (2012)
  13. Ji, Y. & Wang, C. Y. Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim. Acta 107, 664–674 (2013). (10.1016/j.electacta.2013.03.147) / Electrochim. Acta by Y Ji (2013)
  14. Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515 (2016). (10.1038/nature16502) / Nature by CY Wang (2016)
  15. Zhang, G. et al. Rapid restoration of electric vehicle battery performance while driving at cold temperatures. J. Power Sources 371, 35–40 (2017). (10.1016/j.jpowsour.2017.10.029) / J. Power Sources by G Zhang (2017)
  16. Buford, K., Williams, J. & Simonini, M. Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System Report 0148-7191 (SAE Technical Paper, 2011). (10.4271/2011-01-0893)
  17. Novak, K. S., Phillips, C. J., Sunada, E. T. & Kinsella, G. M. Mars Exploration Rover Surface Mission Flight Thermal Performance Report 0148-7191 (SAE Technical Paper, 2005). (10.4271/2005-01-2827)
  18. Ando, M., Shinozaki, K., Okamoto, A., Sugita, H. & Nohara, T. Development of mechanical heat switch for future space missions. Proc. 44th Int. Conf. Environ. Syst. (2014).
  19. Shu, Q., Demko, J. & Fesmire, J. Heat switch technology for cryogenic thermal management. IOP Conference Series Mater. Sci. Engin. 012133 (IOP Publishing, 2017). (10.1088/1757-899X/278/1/012133)
  20. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017). (10.1063/1.5001072) / Appl. Phys. Rev. by G Wehmeyer (2017)
  21. Lyeo, H. K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006). (10.1063/1.2359354) / Appl. Phys. Lett. by HK Lyeo (2006)
  22. Reifenberg, J. P. et al. Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl. Phys. Lett. 91, 111904 (2007). (10.1063/1.2784169) / Appl. Phys. Lett. by JP Reifenberg (2007)
  23. Zhu, J. et al. Temperature-gated thermal rectifier for active heat flow control. Nano Lett. 14, 4867–4872 (2014). (10.1021/nl502261m) / Nano Lett. by J Zhu (2014)
  24. Ito, K., Nishikawa, K., Iizuka, H. & Toshiyoshi, H. Experimental investigation of radiative thermal rectifier using vanadium dioxide. Appl. Phys. Lett. 105, 253503 (2014). (10.1063/1.4905132) / Appl. Phys. Lett. by K Ito (2014)
  25. Ben-Abdallah, P. & Biehs, S. A. Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013). (10.1063/1.4829618) / Appl. Phys. Lett. by P Ben-Abdallah (2013)
  26. Yang, J. et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotech. 7, 91–95 (2012). (10.1038/nnano.2011.216) / Nat. Nanotech. by J Yang (2012)
  27. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014). (10.1038/ncomms5035) / Nat. Commun. by J Cho (2014)
  28. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015). (10.1021/nl504505t) / Nano Lett. by JF Ihlefeld (2015)
  29. Guo, L., Zhang, X., Huang, Y., Hu, R. & Liu, C. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor. Appl. Therm. Eng. 113, 1242–1249 (2017). (10.1016/j.applthermaleng.2016.11.102) / Appl. Therm. Eng. by L Guo (2017)
  30. Marland, B., Bugby, D. & Stouffer, C. Development and testing of an advanced cryogenic thermal switch and cryogenic thermal switch test bed. Cryogenics 44, 413–420 (2004). (10.1016/j.cryogenics.2004.03.014) / Cryogenics by B Marland (2004)
  31. Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014). (10.1016/j.matdes.2013.11.084) / Mater. Des. by JM Jani (2014)
  32. Jain, A. & Goodson, K. E. Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J. Heat Transfer 130, 102402 (2008). (10.1115/1.2945904) / J. Heat Transfer by A Jain (2008)
  33. Yovanovich, M. M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Components Packaging Technol 28, 182–206 (2005). (10.1109/TCAPT.2005.848483) / IEEE Trans. Components Packaging Technol by MM Yovanovich (2005)
  34. Tso, C. Y. & Chao, C. Y. Solid-state thermal diode with shape memory alloys. Int. J. Heat Mass Transfer 93, 605–611 (2016). (10.1016/j.ijheatmasstransfer.2015.10.045) / Int. J. Heat Mass Transfer by CY Tso (2016)
  35. Saums, D. ASTM D 5470-06 Thermal Interface Material Test Stand (DS&A LLC, 2006).
  36. Hao, M., Saviers, K. R. & Fisher, T. S. Design and validation of a high-temperature thermal interface resistance measurement system. J. Therm. Sci. Eng. Appl. 8, 031008 (2016). (10.1115/1.4033011) / J. Therm. Sci. Eng. Appl. by M Hao (2016)
  37. Aceves, S. M., Berry, G. D., Martinez-Frias, J. & Espinosa-Loza, F. Vehicular storage of hydrogen in insulated pressure vessels. Int. J. Hydrogen Energy 31, 2274–2283 (2006). (10.1016/j.ijhydene.2006.02.019) / Int. J. Hydrogen Energy by SM Aceves (2006)
  38. Kuze, Y., Kobayashi, H., Ichinose, H. & Otsuka, T. Development of New Generation Hybrid System (THS II)-Development of Toyota Coolant Heat Storage System Report 0148-7191 (SAE Technical Paper, 2004). (10.4271/2004-01-0643)
  39. Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T. & Miyazaki, S. Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Mater. Sci. Eng. A 202, 148–156 (1995). (10.1016/0921-5093(95)09801-1) / Mater. Sci. Eng. A by B Strnadel (1995)
  40. Santhanagopalan, S., Zhang, Q., Kumaresan, K. & White, R. E. Parameter estimation and life modeling of lithium-ion cells. J. Electrochem. Soc. 155, A345–A353 (2008). (10.1149/1.2839630) / J. Electrochem. Soc. by S Santhanagopalan (2008)
  41. Ramadass, P., Haran, B., Gomadam, P. M., White, R. & Popov, B. N. Development of first principles capacity fade model for Li-ion cells. J. Electrochem. Soc. 151, A196–A203 (2004). (10.1149/1.1634273) / J. Electrochem. Soc. by P Ramadass (2004)
  42. Panasonic 18650PF Specifications (Panasonic, accessed 20 July 2018); https://industrial.panasonic.com/ww/products/batteries/secondary-batteries/lithium-ion/cylindrical-type
  43. Millner, A. Modeling lithium ion battery degradation in electric vehicles. In Proc. 2010 IEEE Conference Innovative Technol. Efficient Reliable Electricity Supply (CITRES) 349–356 (IEEE, 2010). (10.1109/CITRES.2010.5619782)
Dates
Type When
Created 6 years, 10 months ago (Sept. 28, 2018, 7:10 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 6:59 p.m.)
Indexed 1 day, 16 hours ago (Aug. 20, 2025, 8:44 a.m.)
Issued 6 years, 10 months ago (Oct. 1, 2018)
Published 6 years, 10 months ago (Oct. 1, 2018)
Published Online 6 years, 10 months ago (Oct. 1, 2018)
Funders 0

None

@article{Hao_2018, title={Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy}, volume={3}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/s41560-018-0243-8}, DOI={10.1038/s41560-018-0243-8}, number={10}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Hao, Menglong and Li, Jian and Park, Saehong and Moura, Scott and Dames, Chris}, year={2018}, month=oct, pages={899–906} }