Abstract
AbstractWeyl semimetals display a novel topological phase of matter where the Weyl nodes emerge in pairs of opposite chirality and can be seen as either a source or a sink of Berry curvature. The exotic effects in Weyl semimetals, such as surface Fermi arcs and the chiral anomaly, make them a new playground for exploring novel functionalities. Further exploiting their potential applications requires clear understanding of their topological electronic properties. Here we report a Fourier transform scanning tunneling spectroscopy (FT-STS) study on a type-II Weyl semimetal candidate MoTe2 whose Weyl points are predicated to be located above Fermi level. Although its electronic structure below the Fermi level has been identified by angle resolved photo emission spectroscopy, by comparing our experimental data with first-principles calculations, we are able to identify the origins of multiple scattering channels both below and above Fermi level. Our calculations also show the existence of both trivial and topological arc-like states above the Fermi energy. In the FT-STS experiments, we have observed strong signals from intra-arc scatterings as well as from the scattering between the arc-like surface states and the projected bulk states. A detailed comparison between our experimental observations and calculated results reveals the trivial and non-trivial scattering channels are difficult to distinguish in this compound. Interestingly, we find that the broken inversion symmetry changes the terminating states on the two inequivalent surfaces, which in turn changes the relative strength of the scattering channels observed in the FT-STS images on the two surfaces.
Authors
8
- Davide Iaia (first)
- Guoqing Chang (additional)
- Tay-Rong Chang (additional)
- Jin Hu (additional)
- Zhiqiang Mao (additional)
- Hsin Lin (additional)
- Shichao Yan (additional)
- Vidya Madhavan (additional)
References
28
Referenced
17
-
Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).
(
10.1103/PhysRevLett.86.4382
) / Phys. Rev. Lett. by AH Castro Neto (2001) -
Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).
(
10.1088/0953-8984/23/21/213001
) / J. Phys. Condens. Matter by K Rossnagel (2011) -
Sooryakumar, R. & Klein, M. V. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980).
(
10.1103/PhysRevLett.45.660
) / Phys. Rev. Lett. by R Sooryakumar (1980) -
Chang, T.-R. et al. Prediction of an arc-tunable weyl fermion metallic state in MoxW1-xTe2. Nat. Commun. 7, 10639 (2016).
(
10.1038/ncomms10639
) / Nat. Commun. by TR Chang (2016) -
Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
(
10.1038/nature15768
) / Nature by AA Soluyanov (2015) -
Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).
(
10.1103/PhysRevB.92.161107
) / Phys. Rev. B by Y Sun (2015) -
Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).
(
10.1103/PhysRevLett.117.056805
) / Phys. Rev. Lett. by Z Wang (2016) -
Huang, S.-M. et al. A Weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).
(
10.1038/ncomms8373
) / Nat. Commun. by SM Huang (2015) - Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015). / Phys. Rev. X by H Weng (2015)
- Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). / Phys. Rev. X by BQ Lv (2015)
-
Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).
(
10.1126/science.aaa9297
) / Science by SY Xu (2015) -
Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).
(
10.1126/sciadv.1603266
) / Sci. Adv. by SY Xu (2017) -
Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 121112 (2016).
(
10.1103/PhysRevB.94.121112
) / Phys. Rev. B by FY Bruno (2016) -
Beloposki, I. et al. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1-xTe2. Phys. Rev. B 94, 085127 (2016).
(
10.1103/PhysRevB.94.085127
) / Phys. Rev. B by I Beloposki (2016) -
Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).
(
10.1038/nphys3871
) / Nat. Phys. by K Deng (2016) -
Feng, B. et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 94, 195134 (2016).
(
10.1103/PhysRevB.94.195134
) / Phys. Rev. B by B Feng (2016) -
Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).
(
10.1038/nmat4685
) / Nat. Mater. by L Huang (2016) -
Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).
(
10.1038/ncomms13973
) / Nat. Commun. by J Jiang (2017) - Liang, A. et al. Electronic evidence for type II Weyl semimetal state in MoTe2. Preprint at https://arxiv.org/abs/1604.01706 (2016).
- Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016). / Phys. Rev. X by A Tamai (2016)
-
Wang, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 241119 (2016).
(
10.1103/PhysRevB.94.241119
) / Phys. Rev. B by C Wang (2016) -
Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science 297, 1148–1151 (2002).
(
10.1126/science.1072640
) / Science by JE Hoffman (2002) -
Berger, A. N. et al. Temperature-driven topological transition in 1T'-MoTe2. npj Quantum Mater. 3, 2 (2018).
(
10.1038/s41535-017-0075-y
) / npj Quantum Mater. by AN Berger (2018) -
Deng, P. et al. Revealing fermi arcs and weyl nodes in MoTe2 by quasiparticle interference mapping. Phys. Rev. B 95, 245110 (2017).
(
10.1103/PhysRevB.95.245110
) / Phys. Rev. B by P Deng (2017) -
Lin, C.-L. et al. Visualizing type-II Weyl points in tungsten ditelluride by quasiparticle interference. ACS Nano 11, 11459–11465 (2017).
(
10.1021/acsnano.7b06179
) / ACS Nano by CL Lin (2017) - Rüβmann, P. et al. Universal response of the type-II Weyl semimetals phase diagram. Preprint at https://arxiv.org/abs/1706.00456 (2017).
-
Zheng, H. et al. Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface. Phys. Rev. Lett. 117, 266804 (2016).
(
10.1103/PhysRevLett.117.266804
) / Phys. Rev. Lett. by H Zheng (2016) -
Zhang, W. et al. Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2. Phys. Rev. B 96, 165125 (2017).
(
10.1103/PhysRevB.96.165125
) / Phys. Rev. B by W Zhang (2017)
Funders
1
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
Awards
2
- DE-SC0014335
- DE-SC0014208
@article{Iaia_2018, title={Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2}, volume={3}, ISSN={2397-4648}, url={http://dx.doi.org/10.1038/s41535-018-0112-5}, DOI={10.1038/s41535-018-0112-5}, number={1}, journal={npj Quantum Materials}, publisher={Springer Science and Business Media LLC}, author={Iaia, Davide and Chang, Guoqing and Chang, Tay-Rong and Hu, Jin and Mao, Zhiqiang and Lin, Hsin and Yan, Shichao and Madhavan, Vidya}, year={2018}, month=aug }