Abstract
AbstractAs the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.
Authors
15
- D. Rosenberg (first)
- D. Kim (additional)
- R. Das (additional)
- D. Yost (additional)
- S. Gustavsson (additional)
- D. Hover (additional)
- P. Krantz (additional)
- A. Melville (additional)
- L. Racz (additional)
- G. O. Samach (additional)
- S. J. Weber (additional)
- F. Yan (additional)
- J. L. Yoder (additional)
- A. J. Kerman (additional)
- W. D. Oliver (additional)
References
26
Referenced
195
-
Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull.
38, 816825 (2013).
(
10.1557/mrs.2013.229
) / MRS Bull. by WD Oliver (2013) -
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science
339, 1169–1174 (2013).
(
10.1126/science.1231930
) / Science by MH Devoret (2013) -
Barends, R. et al. Coherent josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett.
111, 080502 (2013).
(
10.1103/PhysRevLett.111.080502
) / Phys. Rev. Lett. by R Barends (2013) -
Rigetti, C. et al. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B
86, 100506 (2012).
(
10.1103/PhysRevB.86.100506
) / Phys. Rev. B by C Rigetti (2012) -
Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun.
7, 12964 (2016).
(
10.1038/ncomms12964
) / Nat. Commun. by F Yan (2016) -
Sheldon, S. et al. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A
93, 012301 (2016).
(
10.1103/PhysRevA.93.012301
) / Phys. Rev. A by S Sheldon (2016) -
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature
508, 500–503 (2014).
(
10.1038/nature13171
) / Nature by R Barends (2014) -
Rol, M. et al. Restless tuneup of high-fidelity qubit gates. Phys. Rev. A
7, 041001 (2017).
(
10.1103/PhysRevApplied.7.041001
) -
Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A
93, 060302 (2016).
(
10.1103/PhysRevA.93.060302
) / Phys. Rev. A by S Sheldon (2016) -
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A
86, 032324 (2012).
(
10.1103/PhysRevA.86.032324
) / Phys. Rev. A by AG Fowler (2012) -
Córcoles, A. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun.
6, 6979 (2015).
(
10.1038/ncomms7979
) / Nat. Commun. by A Córcoles (2015) -
Ristè, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun.
6, 6983 (2015).
(
10.1038/ncomms7983
) / Nat. Commun. by D Ristè (2015) -
Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature
519, 66–69 (2015).
(
10.1038/nature14270
) / Nature by J Kelly (2015) -
Song, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. arXiv:1703.10302 (2017).
(
10.1103/PhysRevLett.119.180511
) -
Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett.
97, 180501 (2006).
(
10.1103/PhysRevLett.97.180501
) / Phys. Rev. Lett. by H Bombin (2006) -
Kovalev, A. A. & Pryadko, L. P. Fault tolerance of quantum low-density parity check codes with sublinear distance scaling. Phys. Rev. A
87, 020304 (2013). (R).
(
10.1103/PhysRevA.87.020304
) / Phys. Rev. A by AA Kovalev (2013) -
Weber, S. J. et al. Coherent coupled qubits for quantum annealing Phys. Rev. A
8, 014004 (2017).
(
10.1103/PhysRevApplied.8.014004
) -
Li, D., da Silva, F. C. S., Braje, D. A., Simmonds, R. W. & Pappas, D. P. Remote sensing and control of phase qubits. Appl. Phys. Lett.
97, 102507 (2010).
(
10.1063/1.3488804
) / Appl. Phys. Lett. by D Li (2010) -
Béjanin, J. et al. Three-dimensional wiring for extensible quantum computing: The quantum socket. Phys. Rev. Appl.
6, 044010 (2016).
(
10.1103/PhysRevApplied.6.044010
) / Phys. Rev. Appl. by J Béjanin (2016) -
Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. arXiv:1612.08208 (2016).
(
10.1103/PhysRevApplied.8.034021
) -
Liu, Q. et al. Extensible 3d architecture for superconducting quantum computing. Appl. Phys. Lett.
110, 232602 (2017).
(
10.1063/1.4985435
) - Tolpygo, S. K. et al. Fabrication process and properties of fully-planarized deep-submicron Nb/Al − AlOx/Nb Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25, 1–12 (2015). / IEEE Trans. Appl. Supercond. by SK Tolpygo (2015)
-
Macklin, C. et al. A near-quantum-limited josephson traveling-wave parametric amplifier. Science
350, 307–310 (2015).
(
10.1126/science.aaa8525
) / Science by C Macklin (2015) -
Gustavsson, S. et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science
354, 1573–1577 (2016).
(
10.1126/science.aah5844
) / Science by S Gustavsson (2016) -
Wang, C. et al. Surface participation and dielectric loss in superconducting qubits. Appl. Phys. Lett.
107, 162601 (2015).
(
10.1063/1.4934486
) / Appl. Phys. Lett. by C Wang (2015) -
Foxen, B. et al. Qubit compatible superconducting interconnects. arXiv:1708.04270 (2017).
(
10.1088/2058-9565/aa94fc
)
Dates
Type | When |
---|---|
Created | 7 years, 10 months ago (Oct. 4, 2017, 2:39 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 22, 2022, 8:46 p.m.) |
Indexed | 4 days, 3 hours ago (Aug. 19, 2025, 6:48 a.m.) |
Issued | 7 years, 10 months ago (Oct. 9, 2017) |
Published | 7 years, 10 months ago (Oct. 9, 2017) |
Published Online | 7 years, 10 months ago (Oct. 9, 2017) |
@article{Rosenberg_2017, title={3D integrated superconducting qubits}, volume={3}, ISSN={2056-6387}, url={http://dx.doi.org/10.1038/s41534-017-0044-0}, DOI={10.1038/s41534-017-0044-0}, number={1}, journal={npj Quantum Information}, publisher={Springer Science and Business Media LLC}, author={Rosenberg, D. and Kim, D. and Das, R. and Yost, D. and Gustavsson, S. and Hover, D. and Krantz, P. and Melville, A. and Racz, L. and Samach, G. O. and Weber, S. J. and Yan, F. and Yoder, J. L. and Kerman, A. J. and Oliver, W. D.}, year={2017}, month=oct }