Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractTwo-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (MX, with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MXs. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40 μC cm−2) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS2-based nanogenerators. The theoretical prediction of power output for this bilayer MXs at a moderate sliding speed 1 m s−1 is four orders of magnitude higher than the MoS2 nanogenerator, indicating great potentials in energy harvesting applications.

Bibliography

Xu, B., Deng, J., Ding, X., Sun, J., & Liu, J. Z. (2022). Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides. Npj Computational Materials, 8(1).

Authors 5
  1. Bo Xu (first)
  2. Junkai Deng (additional)
  3. Xiangdong Ding (additional)
  4. Jun Sun (additional)
  5. Jefferson Zhe Liu (additional)
References 74 Referenced 60
  1. Guan, Z. et al. Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6, 1900818 (2020). (10.1002/aelm.201900818) / Adv. Electron. Mater. by Z Guan (2020)
  2. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  3. Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015). (10.1021/acs.nanolett.5b00491) / Nano Lett. by A Belianinov (2015)
  4. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017). (10.1021/acs.nanolett.7b02198) / Nano Lett. by Y Zhou (2017)
  5. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). (10.1038/s41586-018-0336-3) / Nature by Z Fei (2018)
  6. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019). (10.1038/s41467-019-09669-x) / Nat. Commun. by S Yuan (2019)
  7. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014). (10.1103/PhysRevLett.112.157601) / Phys. Rev. Lett. by SN Shirodkar (2014)
  8. Chen, K. et al. Ferromagnetism of 1T’-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 140, 16206–16212 (2018). (10.1021/jacs.8b09247) / J. Am. Chem. Soc. by K Chen (2018)
  9. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). (10.1038/ncomms14956) / Nat. Commun. by W Ding (2017)
  10. Xiao, C. et al. Elemental ferroelectricity and antiferroelectricity in group-V monolayer. Adv. Funct. Mater. 28, 1707383 (2018). (10.1002/adfm.201707383) / Adv. Funct. Mater. by C Xiao (2018)
  11. Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4, 015042 (2017). (10.1088/2053-1583/4/1/015042) / 2D Mater. by H Wang (2017)
  12. Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019). (10.1126/science.aav1937) / Science by W Chen (2019)
  13. Wang, Y. et al. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4, 4074–4080 (2010). (10.1021/nn1004974) / ACS Nano by Y Wang (2010)
  14. Kim, C.-J. et al. Stacking order dependent second harmonic generation and topological defects in h-BN Bilayers. Nano Lett. 13, 5660–5665 (2013). (10.1021/nl403328s) / Nano Lett. by C-J Kim (2013)
  15. Dai, J. & Zeng, X. C. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). (10.1021/jz500409m) / J. Phys. Chem. Lett. by J Dai (2014)
  16. Liu, X., Pyatakov, A. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020). (10.1103/PhysRevLett.125.247601) / Phys. Rev. Lett. by X Liu (2020)
  17. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017). (10.1021/acsnano.7b02756) / ACS Nano by L Li (2017)
  18. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021). (10.1038/s41467-020-20667-2) / Nat. Commun. by CR Woods (2021)
  19. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021). (10.1126/science.abe8177) / Science by M Vizner Stern (2021)
  20. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021). (10.1126/science.abd3230) / Science by K Yasuda (2021)
  21. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020). (10.1038/s41567-020-0947-0) / Nat. Phys. by J Xiao (2020)
  22. Liang, Y., Shen, S., Huang, B., Dai, Y. & Ma, Y. Intercorrelated ferroelectrics in 2D van der Waals materials. Mater. Horiz. 8, 1683–1689 (2021). (10.1039/D1MH00446H) / Mater. Horiz. by Y Liang (2021)
  23. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018). (10.1021/acs.jpclett.8b03654) / J. Phys. Chem. Lett. by Q Yang (2018)
  24. Liu, C., Wan, W., Ma, J., Guo, W. & Yao, Y. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale 10, 7984–7990 (2018). (10.1039/C7NR09006D) / Nanoscale by C Liu (2018)
  25. Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 17, 6309–6314 (2017). (10.1021/acs.nanolett.7b03020) / Nano Lett. by M Wu (2017)
  26. Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer Group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016). (10.1103/PhysRevLett.117.097601) / Phys. Rev. Lett. by R Fei (2016)
  27. Hu, T. & Kan, E. Progress and prospects in low-dimensional multiferroic materials. WIREs Comput. Mol. Sci. 9, e1409 (2019). (10.1002/wcms.1409) / WIREs Comput. Mol. Sci. by T Hu (2019)
  28. Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016). (10.1021/acs.nanolett.6b00726) / Nano Lett. by M Wu (2016)
  29. Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019). (10.1021/acs.nanolett.9b01419) / Nano Lett. by Y Bao (2019)
  30. Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020). (10.1021/acs.nanolett.0c02357) / Nano Lett. by K Chang (2020)
  31. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020). (10.1038/s41467-020-16291-9) / Nat. Commun. by N Higashitarumizu (2020)
  32. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). (10.1038/nature13792) / Nature by W Wu (2014)
  33. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012). (10.1103/PhysRevLett.108.205503) / Phys. Rev. Lett. by Z Liu (2012)
  34. Hod, O., Meyer, E., Zheng, Q. & Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 563, 485–492 (2018). (10.1038/s41586-018-0704-z) / Nature by O Hod (2018)
  35. Han, E. et al. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 19, 305–309 (2020). (10.1038/s41563-019-0529-7) / Nat. Mater. by E Han (2020)
  36. Kong, X. et al. Tunable auxetic properties in group-IV monochalcogenide monolayers. Phys. Rev. B 98, 184104 (2018). (10.1103/PhysRevB.98.184104) / Phys. Rev. B by X Kong (2018)
  37. Deng, J. et al. Electric field induced reversible phase transition in Li doped phosphorene: shape memory effect and superelasticity. J. Am. Chem. Soc. 138, 4772–4778 (2016). (10.1021/jacs.5b13274) / J. Am. Chem. Soc. by J Deng (2016)
  38. Zhang, J.-J., Guan, J., Dong, S. & Yakobson, B. I. Room-temperature ferroelectricity in group-IV metal chalcogenide nanowires. J. Am. Chem. Soc. 141, 15040–15045 (2019). (10.1021/jacs.9b03201) / J. Am. Chem. Soc. by J-J Zhang (2019)
  39. Mehboudi, M. et al. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 117, 246802 (2016). (10.1103/PhysRevLett.117.246802) / Phys. Rev. Lett. by M Mehboudi (2016)
  40. Chang, K. et al. Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 31, 1804428 (2019). (10.1002/adma.201804428) / Adv. Mater. by K Chang (2019)
  41. Kaloni, T. P. et al. From an atomic layer to the bulk: low-temperature atomistic structure and ferroelectric and electronic properties of SnTe films. Phys. Rev. B 99, 134108 (2019). (10.1103/PhysRevB.99.134108) / Phys. Rev. B by TP Kaloni (2019)
  42. Zhang, S., Ma, T., Erdemir, A. & Li, Q. Tribology of two-dimensional materials: from mechanisms to modulating strategies. Mater. Today 26, 67–86 (2019). (10.1016/j.mattod.2018.12.002) / Mater. Today by S Zhang (2019)
  43. Berman, D., Erdemir, A. & Sumant, A. V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12, 2122–2137 (2018). (10.1021/acsnano.7b09046) / ACS Nano by D Berman (2018)
  44. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). (10.1063/1.1329672) / J. Chem. Phys. by G Henkelman (2000)
  45. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012). (10.1063/1.3684549) / J. Chem. Phys. by D Sheppard (2012)
  46. Choi, K. J. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004). (10.1126/science.1103218) / Science by KJ Choi (2004)
  47. Wu, X., Rabe, K. M. & Vanderbilt, D. Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices. Phys. Rev. B 83, 020104 (2011). (10.1103/PhysRevB.83.020104) / Phys. Rev. B by X Wu (2011)
  48. Reimers, J. R., Tawfik, S. A. & Ford, M. J. van der Waals forces control ferroelectric-antiferroelectric ordering in CuInP2S6 and CuBiP2Se6 laminar materials. Chem. Sci. 9, 7620–7627 (2018). (10.1039/C8SC01274A) / Chem. Sci. by JR Reimers (2018)
  49. Tawfik, S. A., Reimers, J. R., Stampfl, C. & Ford, M. J. van der Waals forces control the internal chemical structure of monolayers within the lamellar materials CuInP2S6 and CuBiP2Se6. J. Phys. Chem. C. 122, 22675–22687 (2018). (10.1021/acs.jpcc.8b05349) / J. Phys. Chem. C. by SA Tawfik (2018)
  50. Su, G. et al. Modeling chemical reactions on surfaces: the roles of chemical bonding and van der Waals interactions. Prog. Surf. Sci. 94, 100561 (2019). (10.1016/j.progsurf.2019.100561) / Prog. Surf. Sci. by G Su (2019)
  51. Su, G. et al. Switchable Schottky contacts: simultaneously enhanced output current and reduced leakage current. J. Am. Chem. Soc. 141, 1628–1635 (2019). (10.1021/jacs.8b11459) / J. Am. Chem. Soc. by G Su (2019)
  52. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). (10.1016/j.mattod.2016.12.001) / Mater. Today by ZL Wang (2017)
  53. Lee, J.-H. et al. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29, 1606667 (2017). (10.1002/adma.201606667) / Adv. Mater. by J-H Lee (2017)
  54. Niu, S. & Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015). (10.1016/j.nanoen.2014.11.034) / Nano Energy by S Niu (2015)
  55. Zhou, Y. et al. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 9, 800–807 (2016). (10.1007/s12274-015-0959-8) / Nano Res. by Y Zhou (2016)
  56. Yang, J. et al. Observation of High-Speed Microscale Superlubricity in Graphite. Phys. Rev. Lett. 110, 255504 (2013). (10.1103/PhysRevLett.110.255504) / Phys. Rev. Lett. by J Yang (2013)
  57. Peng, D. et al. Load-induced dynamical transitions at graphene interfaces. Proc. Natl Acad. Sci. USA 117, 12618–12623 (2020). (10.1073/pnas.1922681117) / Proc. Natl Acad. Sci. USA by D Peng (2020)
  58. Ambrosetti, A., Ancilotto, F. & Silvestrelli, P. L. van der Waals-corrected ab initio study of water ice-graphite interaction. J. Phys. Chem. C. 117, 321–325 (2013). (10.1021/jp309617f) / J. Phys. Chem. C. by A Ambrosetti (2013)
  59. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). (10.1103/PhysRev.136.B864) / Phys. Rev. by P Hohenberg (1964)
  60. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). (10.1103/PhysRev.140.A1133) / Phys. Rev. by W Kohn (1965)
  61. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  62. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comp. Mater. Sci. by G Kresse (1996)
  63. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). (10.1103/PhysRevA.38.3098) / Phys. Rev. A by AD Becke (1988)
  64. Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28, 1809–1834 (1983). (10.1103/PhysRevB.28.1809) / Phys. Rev. B by DC Langreth (1983)
  65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  66. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  67. Ambrosetti, A., Ferri, N., DiStasio, R. A. & Tkatchenko, A. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science 351, 1171–1176 (2016). (10.1126/science.aae0509) / Science by A Ambrosetti (2016)
  68. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). (10.1063/1.3382344) / J. Chem. Phys. by S Grimme (2010)
  69. Tkatchenko, A., DiStasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals Interactions. Phys. Rev. Lett. 108, 236402 (2012). (10.1103/PhysRevLett.108.236402) / Phys. Rev. Lett. by A Tkatchenko (2012)
  70. Ambrosetti, A., Reilly, A. M., DiStasio, R. A. & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 (2014). (10.1063/1.4865104) / J. Chem. Phys. by A Ambrosetti (2014)
  71. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). (10.1103/PhysRevLett.92.246401) / Phys. Rev. Lett. by M Dion (2004)
  72. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009). (10.1103/PhysRevLett.103.096102) / Phys. Rev. Lett. by G Román-Pérez (2009)
  73. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011). (10.1103/PhysRevB.83.195131) / Phys. Rev. B by J Klimeš (2011)
  74. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993). (10.1103/PhysRevB.47.1651) / Phys. Rev. B by RD King-Smith (1993)
Dates
Type When
Created 3 years, 5 months ago (March 22, 2022, 7:03 a.m.)
Deposited 2 years, 9 months ago (Nov. 24, 2022, 2:05 p.m.)
Indexed 6 days, 21 hours ago (Aug. 27, 2025, 12:15 p.m.)
Issued 3 years, 5 months ago (March 22, 2022)
Published 3 years, 5 months ago (March 22, 2022)
Published Online 3 years, 5 months ago (March 22, 2022)
Funders 0

None

@article{Xu_2022, title={Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides}, volume={8}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-022-00724-8}, DOI={10.1038/s41524-022-00724-8}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Xu, Bo and Deng, Junkai and Ding, Xiangdong and Sun, Jun and Liu, Jefferson Zhe}, year={2022}, month=mar }