Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractNonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±k points. Taking $${\cal{P}}{\cal{T}}$$ P T -symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4 as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks $${\cal{P}}{\cal{T}}$$ P T symmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-z MnBi2Te4 as a tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

Bibliography

Wang, H., & Qian, X. (2020). Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials. Npj Computational Materials, 6(1).

Authors 2
  1. Hua Wang (first)
  2. Xiaofeng Qian (additional)
References 45 Referenced 70
  1. Mong, R. S., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010). (10.1103/PhysRevB.81.245209) / Phys. Rev. B by RS Mong (2010)
  2. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). (10.1103/PhysRevB.78.195424) / Phys. Rev. B by X-L Qi (2008)
  3. Zhang, D. et al. Topological axion states in the magnetic insulator MbBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019). (10.1103/PhysRevLett.122.206401) / Phys. Rev. Lett. by D Zhang (2019)
  4. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019). (10.1126/sciadv.aaw5685) / Sci. Adv. by J Li (2019)
  5. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019). (10.1103/PhysRevLett.122.107202) / Phys. Rev. Lett. by MM Otrokov (2019)
  6. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). (10.1038/s41586-019-1840-9) / Nature by MM Otrokov (2019)
  7. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020). (10.1038/s41563-019-0573-3) / Nat. Mater. by C Liu (2020)
  8. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019). (10.1088/0256-307X/36/7/076801) / Chin. Phys. Lett. by Y Gong (2019)
  9. Thomson, R., Leburn, C. & Reid, D. Ultrafast Nonlinear Optics (Springer, 2013). (10.1007/978-3-319-00017-6)
  10. Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999). (10.1103/PhysRevA.60.R773) / Phys. Rev. A by PG Kwiat (1999)
  11. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002). (10.1103/RevModPhys.74.145) / Rev. Mod. Phys. by N Gisin (2002)
  12. Zhao, M. et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 5, e16131 (2016). (10.1038/lsa.2016.131) / Light Sci. Appl. by M Zhao (2016)
  13. Wang, H. & Qian, X. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017). (10.1021/acs.nanolett.7b02268) / Nano Lett. by H Wang (2017)
  14. Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337 (2000). (10.1103/PhysRevB.61.5337) / Phys. Rev. B by J Sipe (2000)
  15. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012). (10.1103/PhysRevLett.109.116601) / Phys. Rev. Lett. by SM Young (2012)
  16. Rangel, T. et al. Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides. Phys. Rev. Lett. 119, 067402 (2017). (10.1103/PhysRevLett.119.067402) / Phys. Rev. Lett. by T Rangel (2017)
  17. Wang, H. & Qian, X. Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials. Sci. Adv. 5, eaav9743 (2019). (10.1126/sciadv.aav9743) / Sci. Adv. by H Wang (2019)
  18. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981). (10.1103/PhysRevB.23.5590) / Phys. Rev. B by R von Baltz (1981)
  19. Nastos, F. & Sipe, J. Optical rectification and current injection in unbiased semiconductors. Phys. Rev. B 82, 235204 (2010). (10.1103/PhysRevB.82.235204) / Phys. Rev. B by F Nastos (2010)
  20. Panday, S. R., Barraza-Lopez, S., Rangel, T. & Fregoso, B. M. Injection current in ferroelectric group-IV monochalcogenide monolayers. Phys. Rev. B 100, 195305 (2019). (10.1103/PhysRevB.100.195305) / Phys. Rev. B by SR Panday (2019)
  21. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017). (10.1038/ncomms15995) / Nat. Commun. by F de Juan (2017)
  22. Sodemann, I. & Fu, L. Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). (10.1103/PhysRevLett.115.216806) / Phys. Rev. Lett. by I Sodemann (2015)
  23. Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010). (10.1103/PhysRevLett.105.026805) / Phys. Rev. Lett. by JE Moore (2010)
  24. Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2. npj Computat. Mater. 5, 119 (2019). (10.1038/s41524-019-0257-1) / npj Computat. Mater. by H Wang (2019)
  25. Shi, L.-k., Zhang, D., Chang, K. & Song, J. C. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals. Preprint at https://arxiv.org/abs/2006.08358 (2020). (10.1103/PhysRevLett.126.197402)
  26. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020). (10.1038/s41567-020-0947-0) / Nat. Phys. by J Xiao (2020)
  27. Fregoso, B. M. Bulk photovoltaic effects in the presence of a static electric field. Phys. Rev. B 100, 064301 (2019). (10.1103/PhysRevB.100.064301) / Phys. Rev. B by BM Fregoso (2019)
  28. Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019). (10.1038/s41467-019-11832-3) / Nat. Commun. by Y Zhang (2019)
  29. de Juan, F. et al. Difference frequency generation in topological semimetals. Phys. Rev. Res. 2, 012017 (2020). (10.1103/PhysRevResearch.2.012017) / Phys. Rev. Res. by F de Juan (2020)
  30. Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 (2020). (10.1103/PhysRevB.102.035440) / Phys. Rev. B by R Fei (2020)
  31. Bhalla, P., MacDonald, A. H. & Culcer, D. Resonant photovoltaic effect in doped magnetic semiconductors. Phys. Rev. Lett. 124, 087402 (2020). (10.1103/PhysRevLett.124.087402) / Phys. Rev. Lett. by P Bhalla (2020)
  32. Birss, R. R. Symmetry and Magnetism. Vol. 863 (North-Holland Amsterdam, 1964).
  33. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964). (10.1103/PhysRev.136.B864) / Phys. Rev. B by P Hohenberg (1964)
  34. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). (10.1103/PhysRev.140.A1133) / Phys. Rev. by W Kohn (1965)
  35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  38. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012). (10.1103/RevModPhys.84.1419) / Rev. Mod. Phys. by N Marzari (2012)
  39. Qian, X. et al. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 78, 245112 (2008). (10.1103/PhysRevB.78.245112) / Phys. Rev. B by X Qian (2008)
  40. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014). (10.1016/j.cpc.2014.05.003) / Comput. Phys. Commun. by AA Mostofi (2014)
  41. Du, S. et al. Berry curvature engineering by gating two-dimensional antiferromagnets. Phys. Rev. Res. 2, 022025 (2020). (10.1103/PhysRevResearch.2.022025) / Phys. Rev. Res. by S Du (2020)
  42. Morimoto, T. & Nagaosa, N. Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation. Sci. Rep. 8, 2973 (2018). (10.1038/s41598-018-20539-2) / Sci. Rep. by T Morimoto (2018)
  43. Lee, J. M., Kottos, T. & Shapiro, B. Macroscopic magnetic structures with balanced gain and loss. Phys. Rev. B 91, 094416 (2015). (10.1103/PhysRevB.91.094416) / Phys. Rev. B by JM Lee (2015)
  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  45. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). (10.1063/1.3382344) / J. Chem. Phys. by S Grimme (2010)
Dates
Type When
Created 4 years, 8 months ago (Dec. 18, 2020, 6:04 a.m.)
Deposited 2 years, 8 months ago (Dec. 5, 2022, 9:29 p.m.)
Indexed 2 weeks ago (Aug. 6, 2025, 9:31 a.m.)
Issued 4 years, 8 months ago (Dec. 18, 2020)
Published 4 years, 8 months ago (Dec. 18, 2020)
Published Online 4 years, 8 months ago (Dec. 18, 2020)
Funders 3
  1. NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research 10.13039/100000078 Division of Materials Research

    Region: Americas

    gov (National government)

    Labels4
    1. NSF Division of Materials Research
    2. Materials Research
    3. DMR
    4. MPS/DMR
    Awards1
    1. 1753054
  2. Texas A and M University 10.13039/100007904

    Region: Americas

    gov (Universities (academic only))

    Labels7
    1. Texas A&M University
    2. Texas A&M
    3. Agricultural and Mechanical College of Texas
    4. Texas A.M.C.
    5. TAMU
    6. A&M
    7. A.M.C.
    Awards1
    1. President’s Excellence Fund
  3. NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research

@article{Wang_2020, title={Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials}, volume={6}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-020-00462-9}, DOI={10.1038/s41524-020-00462-9}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Hua and Qian, Xiaofeng}, year={2020}, month=dec }