Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractUnder broken time reversal symmetry such as in the presence of external magnetic field or internal magnetization, a transverse voltage can be established in materials perpendicular to both longitudinal current and applied magnetic field, known as classical Hall effect. However, this symmetry constraint can be relaxed in the nonlinear regime, thereby enabling nonlinear anomalous Hall current in time-reversal invariant materials – an underexplored realm with exciting new opportunities beyond classical linear Hall effect. Here, using group theory and first-principles theory, we demonstrate a remarkable ferroelectric nonlinear anomalous Hall effect in time-reversal invariant few-layer WTe2 where nonlinear anomalous Hall current switches in odd-layer WTe2 except 1T′ monolayer while remaining invariant in even-layer WTe2 upon ferroelectric transition. This even-odd oscillation of ferroelectric nonlinear anomalous Hall effect was found to originate from the absence and presence of Berry curvature dipole reversal and shift dipole reversal due to distinct ferroelectric transformation in even and odd-layer WTe2. Our work not only treats Berry curvature dipole and shift dipole on an equal footing to account for intraband and interband contributions to nonlinear anomalous Hall effect, but also establishes Berry curvature dipole and shift dipole as new order parameters for noncentrosymmetric materials. The present findings suggest that ferroelectric metals and Weyl semimetals may offer unprecedented opportunities for the development of nonlinear quantum electronics.

Bibliography

Wang, H., & Qian, X. (2019). Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2. Npj Computational Materials, 5(1).

Authors 2
  1. Hua Wang (first)
  2. Xiaofeng Qian (additional)
References 43 Referenced 93
  1. Moore, J. E. & Orenstein, J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010). (10.1103/PhysRevLett.105.026805) / Phys. Rev. Lett. by JE Moore (2010)
  2. Sodemann, I. & Fu, L. Quantum Nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). (10.1103/PhysRevLett.115.216806) / Phys. Rev. Lett. by I Sodemann (2015)
  3. Low, T., Jiang, Y. & Guinea, F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B 92, 235447 (2015). (10.1103/PhysRevB.92.235447) / Phys. Rev. B by T Low (2015)
  4. Deyo, E., Golub, L., Ivchenko, E. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at arXiv:0904.1917 (2009).
  5. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018). (10.1038/s41567-018-0189-6) / Nat. Phys. by S-Y Xu (2018)
  6. Zhang, Y., van den Brink, J., Felser, C. & Yan, B. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018). (10.1088/2053-1583/aad1ae) / 2D Mater. by Y Zhang (2018)
  7. You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018). (10.1103/PhysRevB.98.121109) / Phys. Rev. B by J-S You (2018)
  8. Shi, L.-K & Song, J. C. W. Symmetry, spin-texture, and tunable quantum geometry in a WTe2 monolayer. Phys. Rev. B 99, 035403 (2019). (10.1103/PhysRevB.99.035403) / Phys. Rev. B by L-K Shi (2019)
  9. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019). (10.1038/s41586-018-0807-6) / Nature by Q Ma (2019)
  10. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019). (10.1038/s41563-019-0294-7) / Nat. Mater. by K Kang (2019)
  11. Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in Bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018). (10.1103/PhysRevLett.121.266601) / Phys. Rev. Lett. by ZZ Du (2018)
  12. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). (10.1126/science.1256815) / Science by X Qian (2014)
  13. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017). (10.1038/nphys4174) / Nat. Phys. by S Tang (2017)
  14. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017). (10.1038/nphys4091) / Nat. Phys. by Z Fei (2017)
  15. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76 (2018). (10.1126/science.aan6003) / Science by S Wu (2018)
  16. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018). (10.1126/science.aar4426) / Science by E Sajadi (2018)
  17. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018). (10.1126/science.aar4642) / Science by V Fatemi (2018)
  18. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015). (10.1038/nature15768) / Nature by AA Soluyanov (2015)
  19. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014). (10.1038/nature13763) / Nature by MN Ali (2014)
  20. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019). (10.1038/s41586-018-0809-4) / Nature by EJ Sie (2019)
  21. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018). (10.1038/s41586-018-0336-3) / Nature by Z Fei (2018)
  22. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: “Ferroelectric” metals? Phys. Rev. Lett. 14, 217–219 (1965). (10.1103/PhysRevLett.14.217) / Phys. Rev. Lett. by PW Anderson (1965)
  23. Wang, H. & Qian, X. Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials. Sci. Adv. 5, eaav9743 (2019). (10.1126/sciadv.aav9743) / Sci. Adv. by H Wang (2019)
  24. Li, R. et al. Weyl ferroelectric semimetal. Preprint at arXiv:1610.07142 (2016).
  25. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015). / Phys. Rev. X by H Weng (2015)
  26. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000). (10.1103/PhysRevB.61.5337) / Phys. Rev. B by JE Sipe (2000)
  27. Tsirkin, S. S., Puente, P. A. & Souza, I. Gyrotropic effects in trigonal tellurium studied from first principles. Phys. Rev. B 97, 035158 (2018). (10.1103/PhysRevB.97.035158) / Phys. Rev. B by SS Tsirkin (2018)
  28. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016). (10.1103/PhysRevB.94.245121) / Phys. Rev. B by T Morimoto (2016)
  29. Rostami, H. & Polini, M. Nonlinear anomalous photocurrents in Weyl semimetals. Phys. Rev. B 97, 195151 (2018). (10.1103/PhysRevB.97.195151) / Phys. Rev. B by H Rostami (2018)
  30. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964). (10.1103/PhysRev.136.B864) / Phys. Rev. B by P Hohenberg (1964)
  31. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). (10.1103/PhysRev.140.A1133) / Phys. Rev. by W Kohn (1965)
  32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  33. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012). (10.1103/RevModPhys.84.1419) / Rev. Mod. Phys. by N Marzari (2012)
  34. Qian, X. et al. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 78, 245112 (2008). (10.1103/PhysRevB.78.245112) / Phys. Rev. B by X Qian (2008)
  35. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019). (10.1038/s41467-019-10941-3) / Nat. Commun. by ZZ Du (2019)
  36. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral electrons in nonlinear crystals. Preprint at arXiv:1812.08162 (2018).
  37. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). (10.1103/RevModPhys.82.1539) / Rev. Mod. Phys. by N Nagaosa (2010)
  38. Bouhon, A., Slager, R.-J. & Bzdušek, T. Non-abelian reciprocal braiding of Weyl Nodes. Preprint at arXiv:1907.10611 (2019).
  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  41. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010). (10.1088/0953-8984/22/2/022201) / J. Phys. Condens. Matter by J Klimeš (2010)
  42. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). (10.1063/1.2404663) / J. Chem. Phys. by AV Krukau (2006)
  43. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014). (10.1016/j.cpc.2014.05.003) / Comput. Phys. Commun. by AA Mostofi (2014)
Dates
Type When
Created 5 years, 8 months ago (Dec. 6, 2019, 6:02 a.m.)
Deposited 2 years, 8 months ago (Dec. 16, 2022, 9:53 p.m.)
Indexed 2 weeks ago (Aug. 6, 2025, 9:16 a.m.)
Issued 5 years, 8 months ago (Dec. 6, 2019)
Published 5 years, 8 months ago (Dec. 6, 2019)
Published Online 5 years, 8 months ago (Dec. 6, 2019)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1753054

@article{Wang_2019, title={Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2}, volume={5}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-019-0257-1}, DOI={10.1038/s41524-019-0257-1}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Hua and Qian, Xiaofeng}, year={2019}, month=dec }