Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractThe need for improved functionalities is driving the search for more complicated multi-component materials. Despite the factorially increasing composition space, ordered compounds with four or more species are rare. Here, we unveil the competition between the gain in enthalpy and entropy with increasing number of species by statistical analysis of the AFLOW data repositories. A threshold in the number of species is found where entropy gain exceeds enthalpy gain. Beyond that, enthalpy can be neglected, and disorder—complete or partial—is unavoidable.

Bibliography

Toher, C., Oses, C., Hicks, D., & Curtarolo, S. (2019). Unavoidable disorder and entropy in multi-component systems. Npj Computational Materials, 5(1).

Authors 4
  1. Cormac Toher (first)
  2. Corey Oses (additional)
  3. David Hicks (additional)
  4. Stefano Curtarolo (additional)
References 19 Referenced 99
  1. de Fontaine, D. Cluster approach to order–disorder transformations in alloys. In Solid State Physics, Vol. 47 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Academic Press, New York, 1994). (10.1016/S0081-1947(08)60639-6)
  2. Bush, T. S., Catlow, C. R. A. & Battle, P. D. Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem. 5, 1269–1272 (1995). (10.1039/jm9950501269) / J. Mater. Chem. by TS Bush (1995)
  3. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013). (10.1038/nmat3568) / Nat. Mater. by S Curtarolo (2013)
  4. Maddox, J. Crystals from first principles. Nature 335, 201 (1988). (10.1038/335201a0) / Nature by J Maddox (1988)
  5. Gao, M. C. Design of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications (eds Gao, M. C. et al.) Ch. 11, 369–398 (Springer, Cham, Switzerland, 2016). (10.1007/978-3-319-27013-5_11)
  6. Widom, M. Frequency estimate for multicomponent crystalline compounds. J. Stat. Phys. 167, 726–734 (2017). (10.1007/s10955-016-1680-z) / J. Stat. Phys. by M Widom (2017)
  7. Oses, C., Toher, C. & Curtarolo, S. Data-driven design of inorganic materials with the Automatic FLOW framework for materials discovery. MRS Bull. 43, 670–675 (2018). (10.1557/mrs.2018.207)
  8. Rose, F. et al. AFLUX: The LUX materials search API for the AFLOW data repositories. Comput. Mater. Sci. 137, 362–370 (2017). (10.1016/j.commatsci.2017.04.036)
  9. Oses, C. et al. AFLOW-CHULL: Cloud-oriented platform for autonomous phase stability analysis. J. Chem. Inf. Model. 58, 2477–2490 (2018). (10.1021/acs.jcim.8b00393) / Journal of Chemical Information and Modeling by Corey Oses (2018)
  10. McQuarrie, D. A. Statistical Mechanics. (Harper and Row, New York, 1976). / Statistical Mechanics by DA McQuarrie (1976)
  11. Friedrich, R. et al. Coordination corrected ab initio formation enthalpies. npj Comput. Mater. 5, 59 (2019). (10.1038/s41524-019-0192-1) / npj Comput. Mater. by R Friedrich (2019)
  12. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). (10.1038/ncomms9485) / Nat. Commun. by CM Rost (2015)
  13. Sarker, P., Harrington, T. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018). (10.1038/s41467-018-07160-7)
  14. Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016). (10.1038/srep37946) / Sci. Rep. by J Gild (2016)
  15. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). (10.1126/science.1254581) / Science by B Gludovatz (2014)
  16. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016). (10.1038/nature17981) / Nature by Z Li (2016)
  17. Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018). (10.1002/adma.201805004) / Adv. Mater. by JL Braun (2018)
  18. Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials. (John Wiley & Sons, Hoboken, New Jersey, 2005). (10.1002/0471749311) / Kinetics of Materials by RW Balluffi (2005)
  19. Taylor, R. H. et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comput. Mater. Sci. 93, 178–192 (2014). (10.1016/j.commatsci.2014.05.014) / Comput. Mater. Sci. by RH Taylor (2014)
Dates
Type When
Created 6 years, 1 month ago (July 10, 2019, 6:03 a.m.)
Deposited 2 years, 8 months ago (Dec. 16, 2022, 9:47 p.m.)
Indexed 2 days, 16 hours ago (Aug. 24, 2025, 6:51 p.m.)
Issued 6 years, 1 month ago (July 10, 2019)
Published 6 years, 1 month ago (July 10, 2019)
Published Online 6 years, 1 month ago (July 10, 2019)
Funders 1
  1. United States Department of Defense | United States Navy | Office of Naval Research 10.13039/100000006 Office of Naval Research

    Region: Americas

    gov (National government)

    Labels6
    1. U.S. Office of Naval Research
    2. Naval Research
    3. United States Office of Naval Research
    4. U.S. Department of the Navy Office of Naval Research
    5. The Office of Naval Research
    6. ONR
    Awards2
    1. N00014-16-1-2326
    2. N00014-15-1-2863

@article{Toher_2019, title={Unavoidable disorder and entropy in multi-component systems}, volume={5}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-019-0206-z}, DOI={10.1038/s41524-019-0206-z}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Toher, Cormac and Oses, Corey and Hicks, David and Curtarolo, Stefano}, year={2019}, month=jul }