Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractMaterials informatics has significantly accelerated the discovery and analysis of materials in the past decade. One of the key contributors to accelerated materials discovery is the use of on-the-fly data analysis with high-throughput experiments, which has given rise to the need for accelerated and accurate automated estimation of the properties of materials. In this regard, spectroscopic data are widely used for materials discovery because these data include essential information about materials. An important requirement for the realisation of the automated estimation of materials parameters is the selection of a similarity measure, or kernel function. The required measure should be robust in terms of peak shifting, peak broadening, and noise. However, the determination of appropriate similarity measures for spectra and the automated estimation of materials parameters from these spectra currently remain unresolved. We examined major similarity measures to evaluate the similarity of both X-ray absorption and electron energy-loss spectra. The similarity measures show good correspondence with the materials parameter, that is, the crystal-field parameter, in all measures. The Pearson's correlation coefficient was the highest for the robustness against noise and peak broadening. We obtained the regression model for the crystal-field parameter 10 Dq from the similarity of the spectra. The regression model enabled the materials parameter, that is, 10 Dq, to be automatically estimated from the spectra. With regard to research progress in similarity measures, this methodology would make it possible to extract the materials parameter from a large-scale dataset of experimental data.

Bibliography

Suzuki, Y., Hino, H., Kotsugi, M., & Ono, K. (2019). Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures. Npj Computational Materials, 5(1).

Authors 4
  1. Yuta Suzuki (first)
  2. Hideitsu Hino (additional)
  3. Masato Kotsugi (additional)
  4. Kanta Ono (additional)
References 51 Referenced 41
  1. Lookman, T., Alexander, F. J. & Rajan, K. Information Science for Materials Discovery and Design. (Springer International Publishing, Switzerland, 2015). (10.1007/978-3-319-23871-5)
  2. Potyrailo, R. et al. Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011). (10.1021/co200007w) / ACS Comb. Sci. by R Potyrailo (2011)
  3. Koinuma, H. & Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004). (10.1038/nmat1157) / Nat. Mater. by H Koinuma (2004)
  4. Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J. Synchrotron Rad. 21, 1262–1268 (2014). (10.1107/S1600577514016488) / J. Synchrotron Rad. by JM Gregoire (2014)
  5. Ueno, T. et al. Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling. npj Comput. Mater. 4, 4 (2018). (10.1038/s41524-017-0057-4) / npj Comput. Mater. by T Ueno (2018)
  6. Green, M. L. et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105–18 (2017). (10.1063/1.4977487) / Appl. Phys. Rev. by ML Green (2017)
  7. Hill, J. et al. Materials science with large-scale data and informatics: unlocking new opportunities. MRS Bull. 41, 399–409 (2016). (10.1557/mrs.2016.93) / MRS Bull. by J Hill (2016)
  8. Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 191–7 (2014). (10.1038/srep06367) / Sci. Rep. by AG Kusne (2014)
  9. Suram, S. K. et al. Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb. Sci. 19, 37–46 (2017). (10.1021/acscombsci.6b00153) / ACS Comb. Sci. by SK Suram (2017)
  10. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018). (10.1126/sciadv.aaq1566) / Sci. Adv. by F Ren (2018)
  11. Alberi, K. et al. The 2019 materials by design roadmap. J. Phys. D 52, 013001 (2018). (10.1088/1361-6463/aad926) / J. Phys. D by K Alberi (2018)
  12. Stavitski, E. & de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687–694 (2010). (10.1016/j.micron.2010.06.005) / Micron by E Stavitski (2010)
  13. Shirley, E. L. Ab. Initio Inclusion of electron-hole attraction: application to X-ray absorption and resonant inelastic X-Ray scattering. Phys. Rev. Lett. 80, 794–797 (1998). (10.1103/PhysRevLett.80.794) / Phys. Rev. Lett. by ELAbInitio Shirley (1998)
  14. Vinson, J., Rehr, J. J., Kas, J. J. & Shirley, E. L. Bethe-Salpeter equation calculations of core excitation spectra. Phys. Rev. B 83, 115106 (2011). (10.1103/PhysRevB.83.115106) / Phys. Rev. B by J Vinson (2011)
  15. Liang, Y. et al. Accurate X-ray spectral predictions: an advanced self-consistent-field approach inspired by many-body perturbation theory. Phys. Rev. Lett. 118, 096402–7 (2017). (10.1103/PhysRevLett.118.096402) / Phys. Rev. Lett. by Y Liang (2017)
  16. de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids (CRC, Boca Raton, 2008). (10.1201/9781420008425)
  17. de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. 2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field. Phys. Rev. B 42, 5459–5468 (1990). (10.1103/PhysRevB.42.5459) / Phys. Rev. B by FMF de Groot (1990)
  18. Jain, A. K., Murty, M. N. & Flynn, P. J. Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999). (10.1145/331499.331504) / ACM Comput. Surv. by AK Jain (1999)
  19. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999). (10.1038/44565) / Nature by DD Lee (1999)
  20. Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 83–7 (2014). (10.1103/PhysRevB.89.094104) / Phys. Rev. B by B Meredig (2014)
  21. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). (10.1038/nature17439) / Nature by P Raccuglia (2016)
  22. Agrawal, A. & Choudhary, A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater. 4, 053208 (2016). (10.1063/1.4946894) / APL Mater. by A Agrawal (2016)
  23. Zheng, C. et al. Automated generation and ensemble-learned matching of X-ray absorption spectra. npj Comput. Mater. 4, 12 (2018). (10.1038/s41524-018-0067-x) / npj Comput. Mater. by C Zheng (2018)
  24. Kiyohara, S., Miyata, T., Tsuda, K. & Mizoguchi, T. Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy. Sci. Rep. 8, 13548 (2018). (10.1038/s41598-018-30994-6) / Sci. Rep. by S Kiyohara (2018)
  25. Suzuki, Y. et al. Extraction of physical parameters from X-ray spectromicroscopy data using machine learning. Microsc. Microanal. 24, 478–479 (2018). (10.1017/S1431927618014629) / Microsc. Microanal. by Y Suzuki (2018)
  26. Iwasaki, Y., Kusne, A. G. & Takeuchi, I. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries. NPJ Comput. Mater. 3, 1–8 (2017). (10.1038/s41524-017-0006-2) / NPJ Comput. Mater. by Y Iwasaki (2017)
  27. Lerotic, M. et al. Cluster analysis in soft X-ray spectromicroscopy: Finding the patterns in complex specimens. J. Electron Spectrosc. Relat. Phenom. 144–147, 1137–1143 (2005). (10.1016/j.elspec.2005.01.158) / J. Electron Spectrosc. Relat. Phenom. by M Lerotic (2005)
  28. Shirkhorshidi, A. S., Aghabozorgi, S. & Wah, T. Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059–20 (2015). (10.1371/journal.pone.0144059) / PLoS ONE by AS Shirkhorshidi (2015)
  29. Hernández-Rivera, E., Coleman, S. P. & Tschopp, M. A. Using similarity metrics to quantify differences in high-throughput data sets: application to X-ray diffraction patterns. ACS Comb. Sci. 19, 25–36 (2017). (10.1021/acscombsci.6b00142) / ACS Comb. Sci. by E Hernández-Rivera (2017)
  30. Schölkopf, B. & Smola, A. J. Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond (MIT, Cambridge, 2001). (10.7551/mitpress/4175.001.0001)
  31. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 3, 419–6 (2013). (10.1038/srep02810) / Sci. Rep. by G Pilania (2013)
  32. Deza, M. M. & Deza, E. Encyclopedia of Distances (Springer, Berlin, Heidelberg, 2016). (10.1007/978-3-662-52844-0)
  33. Keogh, E. & Ratanamahatana, C. A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005). (10.1007/s10115-004-0154-9) / Knowl. Inf. Syst. by E Keogh (2005)
  34. Rubner, Y., Tomasi, C. & Guibas, L. J. in Sixth International Conference on Computer Vision, 59–66 (IEEE, Bombay, India, 1998). https://doi.org/10.1109/iccv.1998.710701. (10.1109/iccv.1998.710701)
  35. Rubner, Y., Tomasi, C. & Guibas, L. J. The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision. 40, 99–121 (2000). (10.1023/A:1026543900054) / Int. J. Comput. Vision. by Y Rubner (2000)
  36. Berndt, D. J. & Clifford, J. Using dynamic time warping to find patterns in time series. In AAAI-94 workshop on knowledge discovery in databases, 359–370, Usama M. Fayyad and Ramasamy Uthurusamy Eds. (The AAAI Press, Menlo Park, California, 1994).
  37. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, New York, 2006).
  38. Ma, Y. & Fu, Y. Manifold Learning Theory and Applications (CRC, Boca Raton, 2011). (10.1201/b11431)
  39. Borg, I. & Groenen, P. Modern Multidimensional Scaling: Theory and Applications 2nd edn (Springer, New York, 1997). (10.1007/978-1-4757-2711-1) / Modern Multidimensional Scaling: Theory and Applications by I Borg (1997)
  40. Hino, H., Fujiki, J., Akaho, S. & Murata, N. Local intrinsic dimension estimation by generalized linear modeling. Neural Comput. 29, 1838–1878 (2017). (10.1162/NECO_a_00969) / Neural Comput. by H Hino (2017)
  41. Hino, H. ider: Intrinsic Dimension Estimation with R. R J. 9, 329–341 (2017). (10.32614/RJ-2017-054) / R J. by H Hino (2017)
  42. Grassberger, P. & Procaccia, I. Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983). (10.1016/0167-2789(83)90298-1) / Phys. D by P Grassberger (1983)
  43. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proc. Second International Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (Akademiai Kiado, Budapest, 1973).
  44. Weinberger, K. Q., Blitzer, J. & Saul, L. K. in Advances in Neural Information Processing Systems (eds Weiss, Y., lkopf, B. S. O. & Platt, J. C.) Vol. 18, 1473–1480 (MIT, Cambridge, 2006).
  45. Xing, E. P., Jordan, M. I., Russell, S. J. & Ng, A. Y. Distance Metric Learning with Application to Clustering with Side-Information (MIT, Cambridge, 2003).
  46. Davis, J. V., Kulis, B., Jain, P., Sra, S. & Dhillon, I. S. Information-theoretic metric learning. in the 24th International Conference on Machine Learning. 209–216, Zoubin Ghahramani Ed. (ACM Press, New York, 2007). https://doi.org/10.1145/1273496.1273523. (10.1145/1273496.1273523)
  47. Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 EP– (2018). (10.1038/sdata.2018.151) / Sci. Data by K Mathew (2018)
  48. Saito, K. et al. Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation. Sci. Rep. 9, 1526 (2019). (10.1038/s41598-018-37345-5) / Sci. Rep. by K Saito (2019)
  49. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). / J. Mach. Learn. Res. by F Pedregosa (2011)
  50. Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw Package. J. Stat. Softw. 31, 1–24 (2009). (10.18637/jss.v031.i07) / J. Stat. Softw. by T Giorgino (2009)
  51. Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multimodel Inference 2nd edn (Springer, New York, 2002).
Dates
Type When
Created 6 years, 4 months ago (March 29, 2019, 7:03 a.m.)
Deposited 1 year, 1 month ago (July 16, 2024, 4:45 a.m.)
Indexed 3 months, 2 weeks ago (May 8, 2025, 9:03 a.m.)
Issued 6 years, 4 months ago (March 29, 2019)
Published 6 years, 4 months ago (March 29, 2019)
Published Online 6 years, 4 months ago (March 29, 2019)
Funders 0

None

@article{Suzuki_2019, title={Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures}, volume={5}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-019-0176-1}, DOI={10.1038/s41524-019-0176-1}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Suzuki, Yuta and Hino, Hideitsu and Kotsugi, Masato and Ono, Kanta}, year={2019}, month=mar }