Abstract
AbstractSimulations based on solving the Kohn-Sham (KS) equation of density functional theory (DFT) have become a vital component of modern materials and chemical sciences research and development portfolios. Despite its versatility, routine DFT calculations are usually limited to a few hundred atoms due to the computational bottleneck posed by the KS equation. Here we introduce a machine-learning-based scheme to efficiently assimilate the function of the KS equation, and by-pass it to directly, rapidly, and accurately predict the electronic structure of a material or a molecule, given just its atomic configuration. A new rotationally invariant representation is utilized to map the atomic environment around a grid-point to the electron density and local density of states at that grid-point. This mapping is learned using a neural network trained on previously generated reference DFT results at millions of grid-points. The proposed paradigm allows for the high-fidelity emulation of KS DFT, but orders of magnitude faster than the direct solution. Moreover, the machine learning prediction scheme is strictly linear-scaling with system size.
Authors
6
- Anand Chandrasekaran (first)
- Deepak Kamal (additional)
- Rohit Batra (additional)
- Chiho Kim (additional)
- Lihua Chen (additional)
- Rampi Ramprasad (additional)
References
44
Referenced
255
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
(
10.1038/nature14539
) / Nature by Y LeCun (2015) -
Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, USA, 3354–3361 (2012).
(
10.1109/CVPR.2012.6248074
) - Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: recent progress and emerging applications. Rev. Comp. Ch. 29, 186–273 (2016). / Rev. Comp. Ch. by T Mueller (2016)
- Huo, H. & Rupp, M. Unified representation for machine learning of molecules and crystals. Preprint (2017) https://arxiv.org/abs/1704.06439.
-
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
(
10.1103/PhysRevLett.104.136403
) / Phys. Rev. Lett. by AP Bartók (2010) -
Rupp, M., Tkatchenko, A., Müller, K.-R. & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
(
10.1103/PhysRevLett.108.058301
) / Phys. Rev. Lett. by M Rupp (2012) -
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
(
10.1103/PhysRevLett.98.146401
) / Phys. Rev. Lett. by J Behler (2007) -
Botu, V. & Ramprasad, R. Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B 92, 094306 (2015).
(
10.1103/PhysRevB.92.094306
) / Phys. Rev. B by V Botu (2015) -
von Lilienfeld, O. A., Ramakrishnan, R., Rupp, M. & Knoll, A. Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quantum Chem. 115, 1084–1093 (2015).
(
10.1002/qua.24912
) / Int. J. Quantum Chem. by OA von Lilienfeld (2015) -
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. by P Hohenberg (1964) -
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
(
10.1103/PhysRev.140.A1133
) / Phys. Rev. by W Kohn (1965) -
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).
(
10.1038/s41524-017-0056-5
) / npj Comput. Mater. by R Ramprasad (2017) -
Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).
(
10.1038/natrevmats.2015.4
) / Nat. Rev. Mater. by A Jain (2016) -
Mannodi-Kanakkithodi, A. et al. Rational co-design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).
(
10.1002/adma.201600377
) / Adv. Mater. by A Mannodi-Kanakkithodi (2016) -
Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).
(
10.1016/j.mattod.2017.11.021
) / Mater. Today by A Mannodi-Kanakkithodi (2018) -
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).
(
10.1038/s41565-017-0035-5
) / Nat. Nanotechnol. by N Mounet (2018) -
Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).
(
10.1038/s41578-018-0005-z
) / Nat. Rev. Mater. by DP Tabor (2018) -
Botu, V. & Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115, 1074–1083 (2015).
(
10.1002/qua.24836
) / Int. J. Quantum Chem. by V Botu (2015) -
Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
(
10.1063/1.3553717
) / J. Chem. Phys. by J Behler (2011) - Schütt, K. et al. Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 991–1001 (Curran Associates, Inc., 2017). http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions.pdf.
-
Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121, 511–522 (2017).
(
10.1021/acs.jpcc.6b10908
) / J. Phys. Chem. C by V Botu (2017) -
Kolb, B., Lentz, L. C. & Kolpak, A. M. Discovering charge density functionals and structure-property relationships with prophet: a general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017).
(
10.1038/s41598-017-01251-z
) / Sci. Rep. by B Kolb (2017) -
Huan, T. D. et al. A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput. Mater. 3, 37 (2017).
(
10.1038/s41524-017-0042-y
) / npj Comput. Mater. by TD Huan (2017) -
Smith, J. S., Isayev, O. & Roitberg, A. E. Ani-1: an extensible neural network potential with dft accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).
(
10.1039/C6SC05720A
) / Chem. Sci. by JS Smith (2017) -
Imbalzano, G. et al. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J. Chem. Phys. 148, 241730 (2018).
(
10.1063/1.5024611
) / J. Chem. Phys. by G Imbalzano (2018) -
Bianchini, F., Kermode, J. R. & Vita, A. D. Modelling defects in Ni–Al with eam and dft calculations. Model. Simul. Mater. Sci. Eng. 24, 045012 (2016).
(
10.1088/0965-0393/24/4/045012
) / Model. Simul. Mater. Sci. Eng. by F Bianchini (2016) -
Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mat. 10, 693 (2011).
(
10.1038/nmat3078
) / Nat. Mat. by RZ Khaliullin (2011) -
Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).
(
10.1103/PhysRevB.89.094104
) / Phys. Rev. B by B Meredig (2014) -
Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).
(
10.1038/ncomms5845
) / Nat. Commun. by V Sharma (2014) -
Kim, C., Pilania, G. & Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of abx3 perovskites. J. Phys. Chem. C 120, 14575–14580 (2016).
(
10.1021/acs.jpcc.6b05068
) / J. Phys. Chem. C by C Kim (2016) - Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 1–9 (2016). / Nat. Commun. by D Xue (2016)
-
Huan, T. D. et al. A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).
(
10.1038/sdata.2016.12
) / Sci. Data by TD Huan (2016) -
Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).
(
10.1038/srep20952
) / Sci. Rep. by A Mannodi-Kanakkithodi (2016) -
Pilania, G. et al. Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).
(
10.1038/srep19375
) / Sci. Rep. by G Pilania (2016) -
Balachandran, P. V. et al. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2, 043802 (2018).
(
10.1103/PhysRevMaterials.2.043802
) / Phys. Rev. Mater. by PV Balachandran (2018) -
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).
(
10.1126/science.aat2663
) / Science by B Sanchez-Lengeling (2018) -
Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
(
10.1103/PhysRevLett.108.253002
) / Phys. Rev. Lett. by JC Snyder (2012) -
Montavon, G. et al. Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 1305.7074 (2013).
(
10.1088/1367-2630/15/9/095003
) / New J. Phys. by G Montavon (2013) -
Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
(
10.1103/PhysRevB.89.205118
) / Phys. Rev. B by KT Schütt (2014) -
Brockherde, F. et al. Bypassing the kohn-sham equations with machine learning. Nat. Commun. 8, 872 (2017).
(
10.1038/s41467-017-00839-3
) / Nat. Commun. by F Brockherde (2017) -
Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. Schnet–a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
(
10.1063/1.5019779
) / J. Chem. Phys. by KT Schütt (2018) -
Graves, A., Mohamed, A. & Hinton, G. Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Piscataway, NJ, USA, 6645–6649 (2013).
(
10.1109/ICASSP.2013.6638947
) -
Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).
(
10.1021/ci300415d
) / J. Chem. Inf. Model. by L Ruddigkeit (2012) -
Ramakrishnan, R., Dral, P. O., Rupp, M. & Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
(
10.1038/sdata.2014.22
) / Sci. Data by R Ramakrishnan (2014)
Dates
Type | When |
---|---|
Created | 6 years, 6 months ago (Feb. 18, 2019, 6:03 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 16, 2022, 9:42 p.m.) |
Indexed | 1 day, 15 hours ago (Aug. 29, 2025, 6:01 a.m.) |
Issued | 6 years, 6 months ago (Feb. 18, 2019) |
Published | 6 years, 6 months ago (Feb. 18, 2019) |
Published Online | 6 years, 6 months ago (Feb. 18, 2019) |
Funders
1
United States Department of Defense | United States Navy | Office of Naval Research
10.13039/100000006
Office of Naval ResearchRegion: Americas
gov (National government)
Labels
6
- U.S. Office of Naval Research
- Naval Research
- United States Office of Naval Research
- U.S. Department of the Navy Office of Naval Research
- The Office of Naval Research
- ONR
Awards
1
- N0014- 17-1-2656
@article{Chandrasekaran_2019, title={Solving the electronic structure problem with machine learning}, volume={5}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-019-0162-7}, DOI={10.1038/s41524-019-0162-7}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Chandrasekaran, Anand and Kamal, Deepak and Batra, Rohit and Kim, Chiho and Chen, Lihua and Ramprasad, Rampi}, year={2019}, month=feb }