Crossref journal-article
Springer Science and Business Media LLC
npj Computational Materials (297)
Abstract

AbstractThe charged domain wall is an ultrathin (typically nanosized) interface between two domains; it carries bound charge owing to a change of normal component of spontaneous polarization on crossing the wall. In contrast to hetero-interfaces between different materials, charged domain walls (CDWs) can be created, displaced, erased, and recreated again in the bulk of a material. Screening of the bound charge with free carriers is often necessary for stability of CDWs, which can result in giant two-dimensional conductivity along the wall. Usually in nominally insulating ferroelectrics, the concentration of free carriers at the walls can approach metallic values. Thus, CDWs can be viewed as ultrathin reconfigurable strongly conductive sheets embedded into the bulk of an insulating material. This feature is highly attractive for future nanoelectronics. The last decade was marked by a surge of research interest in CDWs. It resulted in numerous breakthroughs in controllable and reproducible fabrication of CDWs in different materials, in investigation of CDW properties and charge compensation mechanisms, in discovery of light-induced effects, and, finally, in detection of giant two-dimensional conductivity. The present review is aiming at a concise presentation of the main physical ideas behind CDWs and a brief overview of the most important theoretical and experimental findings in the field.

Bibliography

Bednyakov, P. S., Sturman, B. I., Sluka, T., Tagantsev, A. K., & Yudin, P. V. (2018). Physics and applications of charged domain walls. Npj Computational Materials, 4(1).

Authors 5
  1. Petr S. Bednyakov (first)
  2. Boris I. Sturman (additional)
  3. Tomas Sluka (additional)
  4. Alexander K. Tagantsev (additional)
  5. Petr V. Yudin (additional)
References 120 Referenced 171
  1. Strukov, B. & Levanyuk, A. Ferroelectric Phenomena in Crystals: Physical Foundations (Springer, 1998). (10.1007/978-3-642-60293-1)
  2. Jona, F. & Shirane, G. Ferroelectric Crystals. International Series of Monographs on Solid State Physics (Pergamon Press, 1962).
  3. Tagantsev, A., Cross, L. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010). (10.1007/978-1-4419-1417-0)
  4. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  5. Vul, B. M., Guro, G. M. & Ivanchik, I. Encountering domains in ferroelectrics. Ferroelectrics 6, 29–31 (1973). (10.1080/00150197308237691) / Ferroelectrics by BM Vul (1973)
  6. Werner, C. S. et al. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 9862 (2017). (10.1038/s41598-017-09703-2) / Sci. Rep. by CS Werner (2017)
  7. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017). (10.1126/sciadv.1700512) / Sci. Adv. by P Sharma (2017)
  8. Li, L. et al. Giant resistive switching via control of ferroelectric charged domain walls. Adv. Mater. 28, 6574–6580 (2016). (10.1002/adma.201600160) / Adv. Mater. by L Li (2016)
  9. Vasudevan, R. K. et al. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524–5531 (2012). (10.1021/nl302382k) / Nano Lett. by RK Vasudevan (2012)
  10. Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015). (10.1088/0953-8984/27/46/463003) / J. Phys. Condens. Matter by D Meier (2015)
  11. Sluka, T., Bednyakov, P., Yudin, P., Crassous, A. & Tagantsev, A. Topological structures in ferroic materials: domain walls, vortices and skyrmions, chap. Charged domain walls in ferroelectrics, 103–138 (Springer International Publishing, 2016). (10.1007/978-3-319-25301-5_5)
  12. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Uspekhi. 17, 199 (1974). (10.1070/PU1974v017n02ABEH004336) / Sov. Phys. Uspekhi. by AP Levanyuk (1974)
  13. Bednyakov, P. S., Sluka, T., Tagantsev, A. K., Damjanovic, D. & Setter, N. Formation of charged ferroelectric domain walls with controlled periodicity. Sci. Rep. 5, 15819 (2015). (10.1038/srep15819) / Sci. Rep. by PS Bednyakov (2015)
  14. Garrity, K. F., Rabe, K. M. & Vanderbilt, D. Hyperferroelectrics: proper ferroelectrics with persistent polarization. Phys. Rev. Lett. 112, 127601 (2014). (10.1103/PhysRevLett.112.127601) / Phys. Rev. Lett. by KF Garrity (2014)
  15. Li, P., Ren, X., Guo, G. & He, L. The origin of hyperferroelectricity in LiBO3 (B = V, Nb, Ta, Os). Sci. Rep. 6, 34085 (2016). (10.1038/srep34085) / Sci. Rep. by P Li (2016)
  16. Liu, S. & Cohen, R. Stable charged antiparallel domain walls in hyperferroelectrics. J. Phys.: Condens. Matter 29, 244003 (2017). / J. Phys.: Condens. Matter by S Liu (2017)
  17. Darinskii, B. & Fedosov, V. Structure of 90° domain walls in BaTiO3. Sov. Phys. Solid State, Ussr. 13, 17–20 (1971). / Sov. Phys. Solid State, Ussr. by B Darinskii (1971)
  18. Hlinka, J. & Marton, P. Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B. 74, 104104 (2006). (10.1103/PhysRevB.74.104104) / Phys. Rev. B. by J Hlinka (2006)
  19. Fousek, J. & Janovec, V. The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135–142 (1969). (10.1063/1.1657018) / J. Appl. Phys. by J Fousek (1969)
  20. Grekov, A. A., Adonin, A. A. & Protsenko, N. P. Encountering domains in SbSI. Ferroelectrics 13, 483–485 (1976). (10.1080/00150197608236647) / Ferroelectrics by AA Grekov (1976)
  21. Surowiak, Z. et al. Domain-structure formation at phase-transitions. Ferroelectrics 20, 277–279 (1978). (10.1080/00150197808237236) / Ferroelectrics by Z Surowiak (1978)
  22. Randall, C. A., Barber, D. J. & Whatmore, R. W. Ferroelectric domain configurations in a modified-PZT ceramic. J. Mater. Sci. 22, 925–931 (1987). (10.1007/BF01103531) / J. Mater. Sci. by CA Randall (1987)
  23. Shur, V. Y., Rumyantsev, E. L. & Subbotin, A. L. Forming of the domain structure in lead germanate during phase transition. Ferroelectrics 140, 305–312 (1993). (10.1080/00150199308008301) / Ferroelectrics by VY Shur (1993)
  24. Lang, S. B., Kugel, V. D. & Rosenman, G. Direct observation of domain inversion in heat-treated LiNbO3 using surface laser intensity modulation method. Ferroelectrics 157, 69–74 (1994). (10.1080/00150199408229484) / Ferroelectrics by SB Lang (1994)
  25. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012). (10.1038/nmat3223) / Nat. Mater. by HY Hwang (2012)
  26. Lin, P. J. & Bursill, L. A. On the width of charged {110} ferroelectric domain walls in potassium niobate. Philos. Mag. A 48, 251–263 (1983). (10.1080/01418618308244313) / Philos. Mag. A by PJ Lin (1983)
  27. Gonnissen, J. et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Adv. Funct. Mater. 26, 7599–7604 (2016). (10.1002/adfm.201603489) / Adv. Funct. Mater. by J Gonnissen (2016)
  28. Matsumoto, T. et al. Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM. Nano Lett. 13, 4594–4601 (2013). (10.1021/nl402158c) / Nano Lett. by T Matsumoto (2013)
  29. Kurushima, K., Yoshimoto, W., Ishii, Y., Cheong, S.-W. & Mori, S. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7. Jpn. J. Appl. Phys. 56, 10PB02 (2017). (10.7567/JJAP.56.10PB02) / Jpn. J. Appl. Phys. by K Kurushima (2017)
  30. Lee, M. H. et al. Hidden antipolar order parameter and entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Phys. Rev. Lett. 119, 157601 (2017). (10.1103/PhysRevLett.119.157601) / Phys. Rev. Lett. by MH Lee (2017)
  31. Qi, Y. et al. Coexistence of ferroelectric vortex domains and charged domain walls in epitaxial BiFeO3 film on (110)O GdScO3 substrate. J. Appl. Phys. 111, 104117 (2012). (10.1063/1.4722253) / J. Appl. Phys. by Y Qi (2012)
  32. Li, L. et al. Atomic scale structure changes induced by charged domain walls in ferroelectric materials. Nano Lett. 13, 5218–5223 (2013). (10.1021/nl402651r) / Nano Lett. by L Li (2013)
  33. Wang, W.-Y. et al. Atomic level 1D structural modulations at the negatively charged domain walls in BiFeO3 films. Adv. Mater. Interfaces 2, 1500024–n/a (2015). (10.1002/admi.201500024) / Adv. Mater. Interfaces by WY Wang (2015)
  34. Tang, Y. L. et al. Atomic-scale mapping of dipole frustration at 90 degrees charged domain walls in ferroelectric PbTiO3 films. Sci. Rep. 4, 4115 (2014). (10.1038/srep04115) / Sci. Rep. by YL Tang (2014)
  35. Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nat. Mater. by CL Jia (2008)
  36. Gao, P. et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011). (10.1038/ncomms1600) / Nat. Commun. by P Gao (2011)
  37. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nat. Commun. 4, 2791 (2013). (10.1038/ncomms3791) / Nat. Commun. by P Gao (2013)
  38. Stolichnov, I. et al. Bent ferroelectric domain walls as reconfigurable metallic-like channels. Nano Lett. 15, 8049–8055 (2015). (10.1021/acs.nanolett.5b03450) / Nano Lett. by I Stolichnov (2015)
  39. Han, M.-G. et al. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films. Phys. Rev. B. 94, 100101 (2016). (10.1103/PhysRevB.94.100101) / Phys. Rev. B. by MG Han (2016)
  40. Wei, X.-K. et al. Controlled charging of ferroelastic domain walls in oxide ferroelectrics. ACS Appl. Mater. Interfaces 9, 6539–6546 (2017). (10.1021/acsami.6b13821) / ACS Appl. Mater. Interfaces by XK Wei (2017)
  41. Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Sci. Rep. 16, 322 (2017). / Sci. Rep. by T Rojac (2017)
  42. Esin, A. A. et al. Dielectric relaxation and charged domain walls in (K,Na)NbO3-based ferroelectric ceramics. J. Appl. Phys. 121, 074101 (2017). (10.1063/1.4975341) / J. Appl. Phys. by AA Esin (2017)
  43. Zhang, Q. H. et al. Direct observation of interlocked domain walls in hexagonal RMnO3 (R=Tm, Lu). Phys. Rev. B. 85, 020102 (2012). (10.1103/PhysRevB.85.020102) / Phys. Rev. B. by QH Zhang (2012)
  44. Kokhanchik, L. The use of surface charging in the SEM for lithium niobate domain structure investigation. Micron 40, 41–45 (2009). (10.1016/j.micron.2008.02.009) / Micron by L Kokhanchik (2009)
  45. Schaab, J. et al. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy. Appl. Phys. Lett. 104, 232904 (2014). (10.1063/1.4879260) / Appl. Phys. Lett. by J Schaab (2014)
  46. Nataf, G. F. et al. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate. Sci. Rep. 6, 33098 (2016). (10.1038/srep33098) / Sci. Rep. by GF Nataf (2016)
  47. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). (10.1038/nmat2373) / Nat. Mater. by J Seidel (2009)
  48. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 10, 614 (2015). (10.1038/nnano.2015.114) / Nat. Nanotechnol. by A Crassous (2015)
  49. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011). (10.1002/adma.201102254) / Adv. Mater. by J Guyonnet (2011)
  50. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2011). (10.1021/nl203349b) / Nano Lett. by P Maksymovych (2011)
  51. Balke, N. et al. Direct observation of capacitor switching using planar electrodes. Adv. Funct. Mater. 20, 3466–3475 (2010). (10.1002/adfm.201000475) / Adv. Funct. Mater. by N Balke (2010)
  52. Feigl, L. et al. Controlled creation and displacement of charged domain walls in ferroelectric thin films. Sci. Rep. 6, 31323 (2016). (10.1038/srep31323) / Sci. Rep. by L Feigl (2016)
  53. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012). (10.1038/nmat3249) / Nat. Mater. by D Meier (2012)
  54. Holstad, T. S. et al. Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3. Phys. Rev. B. 97, 085143 (2018). (10.1103/PhysRevB.97.085143) / Phys. Rev. B. by TS Holstad (2018)
  55. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012). (10.1002/adfm.201201174) / Adv. Funct. Mater. by M Schröder (2012)
  56. Shur, V. Y. et al. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange. J. Appl. Phys. 121, 104101 (2017). (10.1063/1.4978014) / J. Appl. Phys. by VY Shur (2017)
  57. Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012). (10.1103/PhysRevLett.108.077203) / Phys. Rev. Lett. by W Wu (2012)
  58. Campbell, M. P. et al. Hall effect in charged conducting ferroelectric domain walls. Nat. Commun. 7, 13764 (2016). (10.1038/ncomms13764) / Nat. Commun. by MP Campbell (2016)
  59. McQuaid, R. G. P., Campbell, M. P., Whatmore, R. W., Kumar, A. & Gregg, J. M. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 8, 15105 (2017). (10.1038/ncomms15105) / Nat. Commun. by RGP McQuaid (2017)
  60. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 14, 407 (2015). (10.1038/nmat4168) / Nat. Mater. by YS Oh (2015)
  61. Kagawa, F. et al. Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric. Nano Lett. 14, 239–243 (2014). (10.1021/nl403828u) / Nano Lett. by F Kagawa (2014)
  62. Ma, E. Y. et al. Charge-order domain walls with enhanced conductivity in a layered manganite. Nat. Commun. 6, 7595 (2015). (10.1038/ncomms8595) / Nat. Commun. by EY Ma (2015)
  63. Miyazawa, S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J. Appl. Phys. 50, 4599–4603 (1979). (10.1063/1.326568) / J. Appl. Phys. by S Miyazawa (1979)
  64. Nakamura, K., Ando, H. & Shimizu, H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl. Phys. Lett. 50, 1413–1414 (1987). (10.1063/1.97838) / Appl. Phys. Lett. by K Nakamura (1987)
  65. Shur, V. Y., Rumyantsev, E. L., Nikolaeva, E. V. & Shishkin, E. I. Formation and evolution of charged domain walls in congruent lithium niobate. Appl. Phys. Lett. 77, 3636–3638 (2000). (10.1063/1.1329327) / Appl. Phys. Lett. by VY Shur (2000)
  66. Shur, V. Y., Baturin, I. S., Akhmatkhanov, A. R., Chezganov, D. S. & Esin, A. A. Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl. Phys. Lett. 103, 102905 (2013). (10.1063/1.4820351) / Appl. Phys. Lett. by VY Shur (2013)
  67. Shur, V. Y., Gruverman, A. L., Letuchev, V. V., Rumyantsev, E. L. & Subbotin, A. L. Domain structure of lead germanate. Ferroelectrics 98, 29–49 (1989). (10.1080/00150198908217568) / Ferroelectrics by VY Shur (1989)
  68. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013). (10.1038/ncomms2839) / Nat. Commun. by T Sluka (2013)
  69. Wada, S., Yako, K., Kakemoto, H., Tsurumi, T. & Kiguchi, T. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109 (2005). (10.1063/1.1957130) / J. Appl. Phys. by S Wada (2005)
  70. Wada, S., Yako, K., Yokoo, K., Kakemoto, H. & Tsurumi, T. Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334, 293–303 (2006). (10.1080/00150190600689647) / Ferroelectrics by S Wada (2006)
  71. Wada, S. et al. Domain wall engineering in lead-free piezoelectric crystals. Ferroelectrics 355, 37–49 (2007). (10.1080/00150190701515881) / Ferroelectrics by S Wada (2007)
  72. Bednyakov, P., Sluka, T., Tagantsev, A., Damjanovic, D. & Setter, N. Free-carrier-compensated charged domain walls produced with super-bandgap illumination in insulating ferroelectrics. Adv. Mater. 28, 9498–9503 (2016). (10.1002/adma.201602874) / Adv. Mater. by P Bednyakov (2016)
  73. Grabar, A. A., Kedyk, I. V., Stoiak, I. M. & Vysochanskii, Y. M. Reflection of light by charged domain walls in Sn2P2S6 uniaxial ferroelectrics. Ferroelectrics 254, 285–293 (2001). (10.1080/00150190108215008) / Ferroelectrics by AA Grabar (2001)
  74. Itoh, H., Tokunaga, Y., Kida, N., Shimano, R. & Tokura, Y. Charge-ordering-induced polar domains and domain walls in a bilayered manganite Pr(Sr0.15Ca0.85)2 Mn2O7. Appl. Phys. Lett. 96, 032902 (2010). (10.1063/1.3284658) / Appl. Phys. Lett. by H Itoh (2010)
  75. Kämpfe, T. et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B. 89, 035314 (2014). (10.1103/PhysRevB.89.035314) / Phys. Rev. B. by T Kämpfe (2014)
  76. Godau, C., Kämpfe, T., Thiessen, A., Eng, L. M. & Haußmann, A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 11, 4816–4824 (2017). (10.1021/acsnano.7b01199) / ACS Nano. by C Godau (2017)
  77. Shur, V. Y. et al. Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals. J. Appl. Phys. 110, 052013 (2011). (10.1063/1.3623778) / J. Appl. Phys. by VY Shur (2011)
  78. Shur, V. Y. & Zelenovskiy, P. S. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy. J. Appl. Phys. 116, 066802 (2014). (10.1063/1.4891397) / J. Appl. Phys. by VY Shur (2014)
  79. Rubio-Marcos, F. et al. Experimental evidence of charged domain walls in lead-free ferroelectric ceramics: light-driven nanodomain switching. Nanoscale 10, 705–715 (2018). (10.1039/C7NR04304J) / Nanoscale by F Rubio-Marcos (2018)
  80. Gureev, M. Y., Tagantsev, A. K. & Setter, N. Head-to-head and tail-to-tail 180 degrees domain walls in an isolated ferroelectric. Phys. Rev. B. 83, 184104 (2011). (10.1103/PhysRevB.83.184104) / Phys. Rev. B. by MY Gureev (2011)
  81. Kittel, C. & McEuen, P. Introduction to Solid State Physics, 8 (Wiley New York, 1996).
  82. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. Statistical Physics, Part I (Pergamon, Oxford, 1980). / Statistical Physics by L.D. LANDAU (1980)
  83. Tagantsev, A., Shapovalov, K. & Yudin, P. Thick domain walls in non-magnetic ferroics. Ferroelectrics 503, 163–179 (2016). (10.1080/00150193.2016.1218719) / Ferroelectrics by A Tagantsev (2016)
  84. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B. 83, 235313 (2011). (10.1103/PhysRevB.83.235313) / Phys. Rev. B. by EA Eliseev (2011)
  85. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic Theory, 3 (Elsevier, 2013).
  86. Yudin, P. V., Gureev, M. Y., Sluka, T., Tagantsev, A. K. & Setter, N. Anomalously thick domain walls in ferroelectrics. Phys. Rev. B. 91, 060102 (2015). (10.1103/PhysRevB.91.060102) / Phys. Rev. B. by PV Yudin (2015)
  87. Sturman, B., Podivilov, E., Stepanov, M., Tagantsev, A. & Setter, N. Quantum properties of charged ferroelectric domain walls. Phys. Rev. B. 92, 214112 (2015). (10.1103/PhysRevB.92.214112) / Phys. Rev. B. by B Sturman (2015)
  88. Günter, P. & Huignard, J.-P. Photorefractive Materials and Their Applications, 1 (Springer, 2006). (10.1007/b106782)
  89. Sturman, B. & Podivilov, E. Ion and mixed electron-ion screening of charged domain walls in ferroelectrics. EuroPhys. Lett. 122, 67005 (2018). (10.1209/0295-5075/122/67005) / EuroPhys. Lett. by B Sturman (2018)
  90. Sturman, B. & Podivilov, E. Charged domain walls under super-band-gap illumination. Phys. Rev. B. 95, 104102 (2017). (10.1103/PhysRevB.95.104102) / Phys. Rev. B. by B Sturman (2017)
  91. Sze, S. & Ng, K. Physics of Semiconductor Devices (John Wiley & Sons, 2006). (10.1002/0470068329)
  92. Holtz, M. E. et al. Topological defects in hexagonal manganites: Inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017). (10.1021/acs.nanolett.7b01288) / Nano Lett. by ME Holtz (2017)
  93. Artyukhin, S. & Delaney, K. T. & Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects inmultiferroic hexagonal manganites. Nat. Mater 13, 42 (2014). (10.1038/nmat3786) / Nat. Mater by S Artyukhin (2014)
  94. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B. 65, 104111 (2002). (10.1103/PhysRevB.65.104111) / Phys. Rev. B. by B Meyer (2002)
  95. Lubk, A., Gemming, S. & Spaldin, N. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B. 80, 104110 (2009). (10.1103/PhysRevB.80.104110) / Phys. Rev. B. by A Lubk (2009)
  96. Liu, S. et al. Ferroelectric domain wall induced band-gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015). (10.1021/jz502666j) / J. Phys. Chem. Lett. by S Liu (2015)
  97. Morozovska, A. Domain wall conduction in ferroelectrics. Ferroelectrics 438, 3–19 (2012). (10.1080/00150193.2012.744258) / Ferroelectrics by A Morozovska (2012)
  98. Vasudevan, R. K. et al. Domain wall conduction and polarization-mediated transport in ferroelectrics. Adv. Funct. Mater. 23, 2592–2616 (2013). (10.1002/adfm.201300085) / Adv. Funct. Mater. by RK Vasudevan (2013)
  99. Volk, T. R., Gainutdinov, R. V. & Zhang, H. H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Appl. Phys. Lett. 110, 132905 (2017). (10.1063/1.4978857) / Appl. Phys. Lett. by TR Volk (2017)
  100. Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622 (2017). (10.1038/nmat4878) / Nat. Mater. by JA Mundy (2017)
  101. Hlinka, J., Ondrejkovic, P. & Marton, P. The piezoelectric response of nanotwinned BaTiO3. Nanotechnology 20, 105709 (2009). (10.1088/0957-4484/20/10/105709) / Nanotechnology by J Hlinka (2009)
  102. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009). (10.1038/nnano.2009.293) / Nat. Nanotechnol. by N Balke (2009)
  103. Wong, K.-K. Properties of Lithium Niobate, 28 (IET, 2002).
  104. Mohageg, M. et al. Calligraphic poling of lithium niobate. Opt. Express 13, 3408–3419 (2005). (10.1364/OPEX.13.003408) / Opt. Express by M Mohageg (2005)
  105. Terabe, K. et al. Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal. Appl. Phys. Lett. 82, 433–435 (2003). (10.1063/1.1538351) / Appl. Phys. Lett. by K Terabe (2003)
  106. Kugel, V. D. & Rosenman, G. Domain inversion in heat-treated LiNbO3 crystals. Appl. Phys. Lett. 62, 2902–2904 (1993). (10.1063/1.109191) / Appl. Phys. Lett. by VD Kugel (1993)
  107. Sones, C. et al. Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling. Appl. Phys. Lett. 92, 072905 (2008). (10.1063/1.2884185) / Appl. Phys. Lett. by C Sones (2008)
  108. Johann, F. et al. Depth resolution of piezoresponse force microscopy. Appl. Phys. Lett. 94, 172904 (2009). (10.1063/1.3126490) / Appl. Phys. Lett. by F Johann (2009)
  109. Steigerwald, H. et al. Origin of UV-induced poling inhibition in lithium niobate crystals. Phys. Rev. B. 82, 214105 (2010). (10.1103/PhysRevB.82.214105) / Phys. Rev. B. by H Steigerwald (2010)
  110. Boes, A. et al. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. Appl. Phys. Lett. 105, 092904 (2014). (10.1063/1.4895387) / Appl. Phys. Lett. by A Boes (2014)
  111. Ying, C. Y. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev. 6, 526–548 (2012). (10.1002/lpor.201100022) / Laser Photonics Rev. by CY Ying (2012)
  112. Sluka, T. & Tagantsev, A. Electronic elements based on quasi two-dimensional electron/hole gas at charged domain walls in ferroelectrics. US Patent 9171602 B2 (2015).
  113. Ruff, E. et al. Conductivity contrast and tunneling charge transport in the vortexlike ferroelectric domain patterns of multiferroic hexagonal YMnO3. Phys. Rev. Lett. 118, 036803 (2017). (10.1103/PhysRevLett.118.036803) / Phys. Rev. Lett. by E Ruff (2017)
  114. Schaab, J. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electron. Mater. 2, 1500195 (2016). (10.1002/aelm.201500195) / Adv. Electron. Mater. by J Schaab (2016)
  115. Vasudevan, R. K. et al. Field enhancement of electronic conductance at ferroelectric domain walls. Nat. Commun. 8, 1318 (2017). (10.1038/s41467-017-01334-5) / Nat. Commun. by RK Vasudevan (2017)
  116. Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49 (2017). (10.1038/nmat5028) / Nat. Mater. by J Jiang (2017)
  117. Wolba, B. et al. Resistor network modeling of conductive domain walls in lithium niobate. Adv. Electron. Mater. 4, 1700242 (2018). (10.1002/aelm.201700242) / Adv. Electron. Mater. by B Wolba (2018)
  118. Xiang, Y., Zhang, R. & Cao, W. Piezoelectric properties of domain engineered barium titanate single crystals with different. fractions of domain walls. J. Appl. Phys. 106, 064102 (2009). (10.1063/1.3212977) / J. Appl. Phys. by Y Xiang (2009)
  119. Ondrejkovic, P., Marton, P., Guennou, M., Setter, N. & Hlinka, J. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls. Phys. Rev. B. 88, 024114 (2013). (10.1103/PhysRevB.88.024114) / Phys. Rev. B. by P Ondrejkovic (2013)
  120. Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012). (10.1038/ncomms1751) / Nat. Commun. by T Sluka (2012)
Dates
Type When
Created 6 years, 9 months ago (Nov. 23, 2018, 7:16 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 5:34 p.m.)
Indexed 12 hours, 16 minutes ago (Aug. 27, 2025, 12:25 p.m.)
Issued 6 years, 8 months ago (Nov. 30, 2018)
Published 6 years, 8 months ago (Nov. 30, 2018)
Published Online 6 years, 8 months ago (Nov. 30, 2018)
Funders 1
  1. Russian Science Foundation 10.13039/501100006769

    Region: Europe

    gov (National government)

    Labels2
    1. Российский научный фонд
    2. RSF
    Awards1
    1. 16-19-119

@article{Bednyakov_2018, title={Physics and applications of charged domain walls}, volume={4}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-018-0121-8}, DOI={10.1038/s41524-018-0121-8}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Bednyakov, Petr S. and Sturman, Boris I. and Sluka, Tomas and Tagantsev, Alexander K. and Yudin, Petr V.}, year={2018}, month=nov }