Abstract
AbstractX-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green’s function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak “learners” comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.
Authors
12
- Chen Zheng (first)
- Kiran Mathew (additional)
- Chi Chen (additional)
- Yiming Chen (additional)
- Hanmei Tang (additional)
- Alan Dozier (additional)
- Joshua J. Kas (additional)
- Fernando D. Vila (additional)
- John J. Rehr (additional)
- Louis F. J. Piper (additional)
- Kristin A. Persson (additional)
- Shyue Ping Ong (additional)
References
50
Referenced
99
-
Lin, Y. -C. et al. Thermodynamics, kinetics and structural evolution of ε-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794–1805 (2016).
(
10.1021/acs.chemmater.5b04880
) / Chem. Mater. by YC Lin (2016) -
Yu, X. et al. High rate delithiation behaviour of LiFePO 4 studied by quick X-ray absorption spectroscopy. Chem. Commun. 48, 11537–11539 (2012).
(
10.1039/c2cc36382h
) / Chem. Commun. by X Yu (2012) -
Cheng, J. -H. et al. Simultaneous Reduction of Co 3 + and Mn 4 + in P2-Na 2/3 Co 2/3 Mn 1/3 O 2 as evidenced by x-ray absorption spectroscopy during electrochemical sodium intercalation. Chem. Mater. 26, 1219–1225 (2014).
(
10.1021/cm403597h
) / Chem. Mater. by JH Cheng (2014) - Koningsberger, D. C. & Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988).
-
Bunker, G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, New York, 2010).
(
10.1017/CBO9780511809194
) -
Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).
(
10.2138/rmg.2014.78.2
) / Rev. Mineral. Geochem. by M Newville (2014) -
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
(
10.1107/S0909049505012719
) / J. Synchrotron Radiat. by B Ravel (2005) -
Ewels, P., Sikora, T., Serin, V., Ewels, C. P. & Lajaunie, L. A complete overhaul of the electron energy-loss spectroscopy and X-ray absorption spectroscopy database: eelsdb.eu. Microsc. Microanal. 22, 717–724 (2016).
(
10.1017/S1431927616000179
) / Microsc. Microanal. by P Ewels (2016) -
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. (Springer, Boston, MA, 2011).
(
10.1007/978-1-4419-9583-4
) -
Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503 (2010).
(
10.1039/b926434e
) / Phys. Chem. Chem. Phys. by JJ Rehr (2010) -
Rehr, J. J. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).
(
10.1103/RevModPhys.72.621
) / Rev. Mod. Phys. by JJ Rehr (2000) -
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 11002 (2013).
(
10.1063/1.4812323
) / APL Mater. by A Jain (2013) -
Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
(
10.1016/j.commatsci.2012.10.028
) / Comput. Mater. Sci. by SP Ong (2013) -
Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exp. 27, 5037–5059 (2015).
(
10.1002/cpe.3505
) / Concurr. Comput. Pract. Exp. by A Jain (2015) -
Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).
(
10.1016/j.commatsci.2017.07.030
) / Comput. Mater. Sci. by K Mathew (2017) -
Wang, Z. et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power Sources 324, 342–348 (2016).
(
10.1016/j.jpowsour.2016.05.098
) / J. Power Sources by Z Wang (2016) -
Jia, Q. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015).
(
10.1021/acsnano.5b05984
) / ACS Nano by Q Jia (2015) -
Behafarid, F. et al. Structural and electronic properties of micellar Au nanoparticles: Size and ligand effects. ACS Nano 8, 6671–6681 (2014).
(
10.1021/nn406568b
) / ACS Nano by F Behafarid (2014) -
Jorissen, K. & Rehr, J. J. Calculations of electron energy loss and x-ray absorption spectra in periodic systems without a supercell. Phys. Rev. B 81, 245124 (2010).
(
10.1103/PhysRevB.81.245124
) / Phys. Rev. B by K Jorissen (2010) -
Vinson, J. & Rehr, J. J. Ab initio Bethe-Salpeter calculations of the x-ray absorption spectra of transition metals at the L-shell edges. Phys. Rev. B-Condens. Matter Mater. Phys. 86, 1–6 (2012).
(
10.1103/PhysRevB.86.195135
) / Phys. Rev. B-Condens. Matter Mater. Phys. by J Vinson (2012) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) - Wu, Z. & Cohen, R. E. More accurate generalized gradient approximation for solids. Phys. Rev. B-Condens. Matter Mater. Phys. 73, 2–7 (2006). / Phys. Rev. B-Condens. Matter Mater. Phys. by Z Wu (2006)
- Kresse, G. & Harl, J. Accurate bulk properties from approximate many-body techniques. Phys. Rev. Lett. 103, 4–7 (2009). / Phys. Rev. Lett. by G Kresse (2009)
- Haas, P., Tran, F. & Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B-Condens. Matter Mater. Phys. 79, 1–10 (2009). / Phys. Rev. B-Condens. Matter Mater. Phys. by P Haas (2009)
-
Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
(
10.1103/PhysRevB.83.195131
) / Phys. Rev. B by J Klimeš (2011) -
Alkauskas, A. & Pasquarello, A. Band-edge problem in the theoretical determination of defect energy levels: The O vacancy in ZnO as a benchmark case. Phys. Rev. B 84, 125206 (2011).
(
10.1103/PhysRevB.84.125206
) / Phys. Rev. B by A Alkauskas (2011) -
Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
(
10.1103/PhysRevLett.100.136406
) / Phys. Rev. Lett. by J Perdew (2008) -
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
(
10.1063/1.1564060
) / J. Chem. Phys. by J Heyd (2003) -
Paier, J., Asahi, R., Nagoya, A. & Kresse, G. Cu2 ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study. Phys. Rev. B-Condens. Matter Mater. Phys. 79, 1–8 (2009).
(
10.1103/PhysRevB.79.115126
) / Phys. Rev. B-Condens. Matter Mater. Phys. by J Paier (2009) - Da Silva, J. L. F., Ganduglia-Pirovano, M. V., Sauer, J., Bayer, V. & Kresse, G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Phys. Rev. B-Condens. Matter Mater. Phys. 75, 19–24 (2007). / Phys. Rev. B-Condens. Matter Mater. Phys. by JLF Da Silva (2007)
-
Wróbel, J., Kurzydlowski, K. J., Hummer, K., Kresse, G. & Piechota, J. Calculations of ZnO properties using the Heyd-Scuseria-Ernzerhof screened hybrid density functional. Phys. Rev. B-Condens. Matter Mater. Phys. 80, 1–8 (2009).
(
10.1103/PhysRevB.80.155124
) / Phys. Rev. B-Condens. Matter Mater. Phys. by J Wróbel (2009) - Ong, S. P., Mo, Y. & Ceder, G. Low hole polaron migration barrier in lithium peroxide. Phys. Rev. B-Condens. Matter Mater. Phys. 85, 2–5 (2012). / Phys. Rev. B-Condens. Matter Mater. Phys. by SP Ong (2012)
-
Carey, C., Boucher, T., Mahadevan, S., Bartholomew, P. & Dyar, M. D. Machine learning tools formineral recognition and classification from Raman spectroscopy. J. Raman Spectrosc. 46, 894–903 (2015).
(
10.1002/jrs.4757
) / J. Raman Spectrosc. by C Carey (2015) -
Liu, J. et al. Methods for peptide identification by spectral comparison. Proteome Sci. 5, 3 (2007).
(
10.1186/1477-5956-5-3
) / Proteome Sci. by J Liu (2007) -
Stein, S. E. & Scott, D. R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5, 859–866 (1994).
(
10.1016/1044-0305(94)87009-8
) / J. Am. Soc. Mass Spectrom. by SE Stein (1994) -
Rana, J. et al. Local structural changes in LiMn1.5Ni0.5O4 spinel cathode material for lithium-ion batteries. J. Power Sources 255, 439–449 (2014).
(
10.1016/j.jpowsour.2014.01.037
) / J. Power Sources by J Rana (2014) -
Rana, J. et al. On the structural integrity and electrochemical activity of a 0.5Li2MnO3·0.5LiCoO2 cathode material for lithium-ion batteries. J. Mater. Chem. A 2, 9099 (2014).
(
10.1039/c4ta01161a
) / J. Mater. Chem. A by J Rana (2014) -
Bearden, J. A. & Burr, A. F. Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 39, 125–142 (1967).
(
10.1103/RevModPhys.39.125
) / Rev. Mod. Phys. by JA Bearden (1967) -
Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225–e1600225 (2016).
(
10.1126/sciadv.1600225
) / Sci. Adv. by W Sun (2016) -
Xu, J. et al. X-ray absorption spectra of graphene and graphene oxide by full-potential multiple scattering calculations with self-consistent charge density. Phys. Rev. B 92, 125408 (2015).
(
10.1103/PhysRevB.92.125408
) / Phys. Rev. B by J Xu (2015) -
Ong, S. P. et al. The materials application programming interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comput. Mater. Sci. 97, 209–215 (2015).
(
10.1016/j.commatsci.2014.10.037
) / Comput. Mater. Sci. by SP Ong (2015) -
Ravel, B. A practical introduction to multiple scattering theory. J. Alloy. Compd. 401, 118–126 (2005).
(
10.1016/j.jallcom.2005.04.021
) / J. Alloy. Compd. by B Ravel (2005) -
Zoubir, A. Raman Imaging, Vol. 168 (Springer, Berlin Heidelberg, 2012).
(
10.1007/978-3-642-28252-2
) -
Hansen, M. E. & Smedsgaard, J. A new matching algorithm for high resolution mass spectra. J. Am. Soc. Mass Spectrom. 15, 1173–1180 (2004).
(
10.1016/j.jasms.2004.03.008
) / J. Am. Soc. Mass Spectrom. by ME Hansen (2004) -
Hernández-Rivera, E., Coleman, S. P. & Tschopp, M. A. Using Similarity Metrics to Quantify Differences in High-Throughput Data Sets: Application to X-ray Diffraction Patterns. ACS Comb. Sci. 19, 25–36 (2017).
(
10.1021/acscombsci.6b00142
) / ACS Comb. Sci. by E Hernández-Rivera (2017) -
Deza, M. M. & Deza, E. Encyclopedia of Distances. (Springer, Berlin Heidelberg, 2013).
(
10.1007/978-3-642-30958-8
) -
Ho, T. K., Hull, J. J. & Srihari, S. N. Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16, 66–75 (1994).
(
10.1109/34.273716
) / IEEE Trans. Pattern Anal. Mach. Intell. by TK Ho (1994) -
Black, D. The Theory of Committees and Elections. (Springer, Netherlands, 1986).
(
10.1007/978-94-009-4225-7
) - Jones, E., Oliphant, T. & Peterson, P. Scipy: Open Source Scientific Tools For Python. http://www.scipy.org (2001).
-
van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy Array: A structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).
(
10.1109/MCSE.2011.37
) / Comput. Sci. Eng. by S van der Walt (2011)
Dates
Type | When |
---|---|
Created | 7 years, 5 months ago (March 14, 2018, 7:57 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 20, 2022, 5:22 p.m.) |
Indexed | 3 days, 23 hours ago (Aug. 21, 2025, 1:39 p.m.) |
Issued | 7 years, 5 months ago (March 20, 2018) |
Published | 7 years, 5 months ago (March 20, 2018) |
Published Online | 7 years, 5 months ago (March 20, 2018) |
@article{Zheng_2018, title={Automated generation and ensemble-learned matching of X-ray absorption spectra}, volume={4}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-018-0067-x}, DOI={10.1038/s41524-018-0067-x}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Zheng, Chen and Mathew, Kiran and Chen, Chi and Chen, Yiming and Tang, Hanmei and Dozier, Alan and Kas, Joshua J. and Vila, Fernando D. and Rehr, John J. and Piper, Louis F. J. and Persson, Kristin A. and Ong, Shyue Ping}, year={2018}, month=mar }