Abstract
AbstractThe question of material stability is of fundamental importance to any analysis of system properties in condensed matter physics and materials science. The ability to evaluate chemical stability, i.e., whether a stoichiometry will persist in some chemical environment, and structure selection, i.e. what crystal structure a stoichiometry will adopt, is critical to the prediction of materials synthesis, reactivity and properties. Here, we demonstrate that density functional theory, with the recently developed strongly constrained and appropriately normed (SCAN) functional, has advanced to a point where both facets of the stability problem can be reliably and efficiently predicted for main group compounds, while transition metal compounds are improved but remain a challenge. SCAN therefore offers a robust model for a significant portion of the periodic table, presenting an opportunity for the development of novel materials and the study of fine phase transformations even in largely unexplored systems with little to no experimental data.
Authors
11
- Yubo Zhang (first)
- Daniil A. Kitchaev (additional)
- Julia Yang (additional)
- Tina Chen (additional)
- Stephen T. Dacek (additional)
- Rafael A. Sarmiento-Pérez (additional)
- Maguel A. L. Marques (additional)
- Haowei Peng (additional)
- Gerbrand Ceder (additional)
- John P. Perdew (additional)
- Jianwei Sun (additional)
References
74
Referenced
191
-
Kitchaev, D. A. & Ceder, G. Evaluating structure selection in the hydrothermal growth of FeS2 pyrite and marcasite. Nat. Commun. 7, 13799 (2016).
(
10.1038/ncomms13799
) / Nat. Commun. by DA Kitchaev (2016) -
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006).
(
10.1063/1.2210932
) / J. Chem. Phys. by AR Oganov (2006) -
Woodley, S. M. & Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937–946 (2008).
(
10.1038/nmat2321
) / Nat. Mater. by SM Woodley (2008) -
Robinson, D. M. et al. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135, 3494–3501 (2013).
(
10.1021/ja310286h
) / J. Am. Chem. Soc. by DM Robinson (2013) -
Kohn, W. Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys
. 71, 1253 (1999).
(
10.1103/RevModPhys.71.1253
) / Rev. Mod. Phys by W Kohn (1999) -
Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).
(
10.1063/1.4704546
) / J. Chem. Phys. by K Burke (2012) -
Becke, A. D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).
(
10.1063/1.4869598
) / J. Chem. Phys. by AD Becke (2014) -
Yu, H. S., Li, S. L. & Truhlar, D. G. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 145, 130901 (2016).
(
10.1063/1.4963168
) / J. Chem. Phys. by HS Yu (2016) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Kitchaev, D. A., Dacek, S. T., Sun, W. & Ceder, G. Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J. Am. Chem. Soc. 139, 2672–2681 (2017).
(
10.1021/jacs.6b11301
) / J. Am. Chem. Soc. by DA Kitchaev (2017) -
Booth, G. H., Grüneis, A., Kresse, G. & Alavi, A. Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370 (2013).
(
10.1038/nature11770
) / Nature by GH Booth (2013) -
Wu, Z. & Cohen, R. E. More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).
(
10.1103/PhysRevB.73.235116
) / Phys. Rev. B by Z Wu (2006) -
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
(
10.1103/PhysRevLett.100.136406
) / Phys. Rev. Lett. by JP Perdew (2008) -
Armiento, R. & Mattsson, A. E. Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 72, 085108 (2005).
(
10.1103/PhysRevB.72.085108
) / Phys. Rev. B by R Armiento (2005) -
Sarmiento-Pérez, R., Botti, S. & Marques, M. A. Optimized exchange and correlation semilocal functional for the calculation of energies of formation. J. Chem. Theory Comput. 11, 3844–3850 (2015).
(
10.1021/acs.jctc.5b00529
) / J. Chem. Theory Comput. by R Sarmiento-Pérez (2015) -
Liechtenstein, A., Anisimov, V. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995).
(
10.1103/PhysRevB.52.R5467
) / Phys. Rev. B by A Liechtenstein (1995) -
Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505 (1998).
(
10.1103/PhysRevB.57.1505
) / Phys. Rev. B by S Dudarev (1998) -
Cococcioni, M. & De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005).
(
10.1103/PhysRevB.71.035105
) / Phys. Rev. B by M Cococcioni (2005) -
Peng, H. & Perdew, J. P. Synergy of van der Waals and self-interaction corrections in transition metal monoxides. Phys. Rev. B 96, 100101(R) (2017).
(
10.1103/PhysRevB.96.100101
) / Phys. Rev. B by H Peng (2017) -
Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 93, 045132 (2016).
(
10.1103/PhysRevB.93.045132
) / Phys. Rev. B by DA Kitchaev (2016) -
Curnan, M. T. & Kitchin, J. R. Investigating the energetic ordering of stable and metastable TiO2 polymorphs using DFT + U and hybrid functionals. J. Phys. Chem. C. 119, 21060–21071 (2015).
(
10.1021/acs.jpcc.5b05338
) / J. Phys. Chem. C. by MT Curnan (2015) -
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
(
10.1063/1.3382344
) / J. Chem. Phys. by S Grimme (2010) -
Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
(
10.1103/PhysRevLett.102.073005
) / Phys. Rev. Lett. by A Tkatchenko (2009) -
Vydrov, O. A. & Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010).
(
10.1063/1.3521275
) / J. Chem. Phys. by OA Vydrov (2010) - Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016). / Phys. Rev. X by H Peng (2016)
-
Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).
(
10.1103/PhysRevB.85.115104
) / Phys. Rev. B by V Stevanović (2012) -
Lany, S. Semiconductor thermochemistry in density functional calculations. Phys. Rev. B 78, 245207 (2008).
(
10.1103/PhysRevB.78.245207
) / Phys. Rev. B by S Lany (2008) -
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73, 195107 (2006).
(
10.1103/PhysRevB.73.195107
) / Phys. Rev. B by L Wang (2006) -
Persson, K. A., Waldwick, B., Lazic, P. & Ceder, G. Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys. Rev. B 85, 235438 (2012).
(
10.1103/PhysRevB.85.235438
) / Phys. Rev. B by KA Persson (2012) -
Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).
(
10.1103/PhysRevLett.115.036402
) / Phys. Rev. Lett. by J Sun (2015) -
Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).
(
10.1063/1.2370993
) / J. Chem. Phys. by Y Zhao (2006) -
Tao, J. & Mo, Y. Accurate semilocal density functional for condensed-matter physics and quantum chemistry. Phys. Rev. Lett. 117, 073001 (2016).
(
10.1103/PhysRevLett.117.073001
) / Phys. Rev. Lett. by J Tao (2016) -
Sun, J., Xiao, B. & Ruzsinszky, A. Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation. J. Chem. Phys. 137, 051101 (2012).
(
10.1063/1.4742312
) / J. Chem. Phys. by J Sun (2012) -
Sun, J. et al. Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J. Chem. Phys. 138, 044113 (2013).
(
10.1063/1.4789414
) / J. Chem. Phys. by J Sun (2013) -
Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).
(
10.1103/PhysRevLett.91.146401
) / Phys. Rev. Lett. by J Tao (2003) -
M. del Campo, J., Gázquez, J. L., Trickey, S. B. & Vela, A. A new meta-GGA exchange functional based on an improved constraint-based GGA. Chem. Phys. Lett. 543, 179–183 (2012).
(
10.1016/j.cplett.2012.06.025
) / Chem. Phys. Lett. by J M. del Campo (2012) -
Sun, J., Perdew, J. P. & Ruzsinszky, A. Semilocal density functional obeying a strongly tightened bound for exchange. Proc. Natl. Acad. Sci. USA 112, 685–689 (2015).
(
10.1073/pnas.1423145112
) / Proc. Natl. Acad. Sci. USA by J Sun (2015) -
Wellendorff, J., Lundgaard, K. T., Jacobsen, K. W. & Bligaard, T. mBEEF: an accurate semi-local Bayesian error estimation density functional. J. Chem. Phys. 140, 144107 (2014).
(
10.1063/1.4870397
) / J. Chem. Phys. by J Wellendorff (2014) -
Yu, H. S., He, X. & Truhlar, D. G. MN15-L: a new local exchange-correlation functional for Kohn–Sham density functional theory with broad accuracy for atoms, molecules, and solids. J. Chem. Theory Comput. 12, 1280–1293 (2016).
(
10.1021/acs.jctc.5b01082
) / J. Chem. Theory Comput. by HS Yu (2016) -
Mardirossian, N. & Head-Gordon, M. Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. J. Chem. Phys. 142, 074111 (2015).
(
10.1063/1.4907719
) / J. Chem. Phys. by N Mardirossian (2015) -
Sun, J. et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8, 831–836 (2016).
(
10.1038/nchem.2535
) / Nat. Chem. by J Sun (2016) -
Goerigk, L. et al. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19, 32184–32215 (2017).
(
10.1039/C7CP04913G
) / Phys. Chem. Chem. Phys. by L Goerigk (2017) -
Remsing, R. C., Klein, M. L. & Sun, J. Dependence of the structure and dynamics of liquid silicon on the choice of density functional approximation. Phys. Rev. B 96, 024203 (2017).
(
10.1103/PhysRevB.96.024203
) / Phys. Rev. B by RC Remsing (2017) -
Chen, M. et al. Ab initio theory and modeling of water. Proc. Natl. Acad. Sci. USA 114, 10846–10851 (2017).
(
10.1073/pnas.1712499114
) / Proc. Natl. Acad. Sci. USA by M Chen (2017) -
Patra, A., Bates, J., Sun, J. & Perdew, J. P. Properties of real metallic surfaces: effects of density functional semilocality and van der Waals nonlocality. Proc. Natl. Acad. Sci. USA 114, E9188–E9196 (2017).
(
10.1073/pnas.1713320114
) / Proc. Natl. Acad. Sci. USA by A Patra (2017) -
Tran, F., Stelzl, J. & Blaha, P. Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J. Chem. Phys. 144, 204120 (2016).
(
10.1063/1.4948636
) / J. Chem. Phys. by F Tran (2016) -
Hinuma, Y., Hayashi, H., Kumagai, Y., Tanaka, I. & Oba, F. Comparison of approximations in density functional theory calculations: energetics and structure of binary oxides. Phys. Rev. B 96, 094102 (2017).
(
10.1103/PhysRevB.96.094102
) / Phys. Rev. B by Y Hinuma (2017) -
Zhang, Y., Sun, J., Perdew, J. P. & Wu, X. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys. Rev. B 96, 035143 (2017).
(
10.1103/PhysRevB.96.035143
) / Phys. Rev. B by Y Zhang (2017) -
Perdew, J. P., Sun, J., Ruzsinszky, A., Mezei, P. D. & Csonka, G. I. Why density functionals should not be judged primarily by atomization energies. Period. Polytech. Chem. Eng. 60, 2 (2016).
(
10.3311/PPch.8356
) / Period. Polytech. Chem. Eng. by JP Perdew (2016) -
Chevrier, V. L., Ong, S. P., Armiento, R., Chan, M. K. & Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010).
(
10.1103/PhysRevB.82.075122
) / Phys. Rev. B by VL Chevrier (2010) -
Pernot, P., Civalleri, B., Presti, D. & Savin, A. Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J. Phys. Chem. A 119, 5288–5304 (2015).
(
10.1021/jp509980w
) / J. Phys. Chem. A by P Pernot (2015) -
Lejaeghere, K., Van Speybroeck, V., Van Oost, G. & Cottenier, S. Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci. 39, 1–24 (2014).
(
10.1080/10408436.2013.772503
) / Crit. Rev. Solid State Mater. Sci. by K Lejaeghere (2014) -
Medvedev, M. G., Bushmarinov, I. S., Sun, J., Perdew, J. P. & Lyssenko, K. A. Response to Comment on “Density functional theory is straying from the path toward the exact functional”. Science 356, 496–496 (2017).
(
10.1126/science.aam9550
) / Science by MG Medvedev (2017) -
Zhang, F., Gale, J., Uberuaga, B., Stanek, C. & Marks, N. Importance of dispersion in density functional calculations of cesium chloride and its related halides. Phys. Rev. B 88, 054112 (2013).
(
10.1103/PhysRevB.88.054112
) / Phys. Rev. B by F Zhang (2013) -
Robie, R. A. Debye temperatures of selected silicate minerals. US Geological Survey, 1988. https://pubs.er.usgs.gov/publication/ofr88663.
(
10.3133/ofr88663
) -
Anderson, O. L., Schreiber, E., Liebermann, R. C. & Soga, N. Some elastic constant data on minerals relevant to geophysics. Rev. Geophys. 6, 491–524 (1968).
(
10.1029/RG006i004p00491
) / Rev. Geophys. by OL Anderson (1968) -
Bachmann, K., Hsu, F., Thiel, F. & Kasper, H. Debye temperature and standard entropies and enthalpies of compound semiconductors of the type I-III-VI2. J. Electron. Mater. 6, 431–448 (1977).
(
10.1007/BF02660497
) / J. Electron. Mater. by K Bachmann (1977) -
Tanaka, I. Impacts of first principles calculations in engineering ceramics. J. Ceram. Soc. Jpn. 124, 791–795 (2016).
(
10.2109/jcersj2.16093
) / J. Ceram. Soc. Jpn. by I Tanaka (2016) -
Navrotsky, A. Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12, 2207–2215 (2011).
(
10.1002/cphc.201100129
) / ChemPhysChem by A Navrotsky (2011) -
Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).
(
10.1126/sciadv.1600225
) / Sci. Adv. by W Sun (2016) -
Curtarolo, S., Morgan, D. & Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. Calphad 29, 163–211 (2005).
(
10.1016/j.calphad.2005.01.002
) / Calphad by S Curtarolo (2005) -
Li, C., Zheng, X., Cohen, A. J., Mori-Sánchez, P. & Yang, W. Local scaling correction for reducing delocalization error in density functional approximations. Phys. Rev. Lett. 114, 053001 (2015).
(
10.1103/PhysRevLett.114.053001
) / Phys. Rev. Lett. by C Li (2015) -
Jaramillo, J., Scuseria, G. E. & Ernzerhof, M. Local hybrid functionals. J. Chem. Phys. 118, 1068–1073 (2003).
(
10.1063/1.1528936
) / J. Chem. Phys. by J Jaramillo (2003) -
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).
(
10.1103/PhysRevB.23.5048
) / Phys. Rev. B by JP Perdew (1981) -
Pederson, M. R., Ruzsinszky, A. & Perdew, J. P. Communication: Self-interaction correction with unitary invariance in density functional theory. J. Chem. Phys. 140, 121103 (2014).
(
10.1063/1.4869581
) / J. Chem. Phys. by MR Pederson (2014) -
Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).
(
10.1038/nmat1691
) / Nat. Mater. by CC Fischer (2006) -
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. Sect. B Struct. Sci. 58, 364–369 (2002).
(
10.1107/S0108768102006948
) / Acta Crystallogr. Sect. B Struct. Sci. by A Belsky (2002) -
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
(
10.1016/j.commatsci.2012.10.028
) / Comput. Mater. Sci. by SP Ong (2013) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput. Mater. Sci. by G Kresse (1996) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996).
(
10.1103/PhysRevB.54.16533
) / Phys. Rev. B by JP Perdew (1996) -
Sun, J. et al. Density functionals that recognize covalent, metallic, and weak bonds. Phys. Rev. Lett. 111, 106401 (2013).
(
10.1103/PhysRevLett.111.106401
) / Phys. Rev. Lett. by J Sun (2013)
Dates
Type | When |
---|---|
Created | 7 years, 6 months ago (March 5, 2018, 6:02 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 20, 2022, 5:22 p.m.) |
Indexed | 2 days, 3 hours ago (Sept. 3, 2025, 7:12 a.m.) |
Issued | 7 years, 5 months ago (March 9, 2018) |
Published | 7 years, 5 months ago (March 9, 2018) |
Published Online | 7 years, 5 months ago (March 9, 2018) |
@article{Zhang_2018, title={Efficient first-principles prediction of solid stability: Towards chemical accuracy}, volume={4}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/s41524-018-0065-z}, DOI={10.1038/s41524-018-0065-z}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Zhang, Yubo and Kitchaev, Daniil A. and Yang, Julia and Chen, Tina and Dacek, Stephen T. and Sarmiento-Pérez, Rafael A. and Marques, Maguel A. L. and Peng, Haowei and Ceder, Gerbrand and Perdew, John P. and Sun, Jianwei}, year={2018}, month=mar }