Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractIntriguing “slidetronics” has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

Bibliography

Sui, F., Li, H., Qi, R., Jin, M., Lv, Z., Wu, M., Liu, X., Zheng, Y., Liu, B., Ge, R., Wu, Y.-N., Huang, R., Yue, F., Chu, J., & Duan, C. (2024). Atomic-level polarization reversal in sliding ferroelectric semiconductors. Nature Communications, 15(1).

Authors 15
  1. Fengrui Sui (first)
  2. Haoyang Li (additional)
  3. Ruijuan Qi (additional)
  4. Min Jin (additional)
  5. Zhiwei Lv (additional)
  6. Menghao Wu (additional)
  7. Xuechao Liu (additional)
  8. Yufan Zheng (additional)
  9. Beituo Liu (additional)
  10. Rui Ge (additional)
  11. Yu-Ning Wu (additional)
  12. Rong Huang (additional)
  13. Fangyu Yue (additional)
  14. Junhao Chu (additional)
  15. Chungang Duan (additional)
References 42 Referenced 51
  1. Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proc. Natl. Acad. Sci. 118, 50e2115703118 (2021). (10.1073/pnas.2115703118) / Proc. Natl. Acad. Sci. by M Wu (2021)
  2. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022). (10.1038/s41586-022-05341-5) / Nature by S Deb (2022)
  3. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021). (10.1126/science.abe8177) / Science by M Vizner Stern (2021)
  4. Wu, M. Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021). (10.1021/acsnano.0c08483) / ACS Nano by M Wu (2021)
  5. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). (10.1038/ncomms14956) / Nat. Commun. by W Ding (2017)
  6. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017). (10.1021/acsnano.7b02756) / ACS Nano by L Li (2017)
  7. Wan, Y. et al. Room-temperature ferroelectricity in 1T’-ReS2 multilayers. Phys. Rev. Lett. 128, 067601 (2022). (10.1103/PhysRevLett.128.067601) / Phys. Rev. Lett. by Y Wan (2022)
  8. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021). (10.1126/science.abd3230) / Science by K Yasuda (2021)
  9. Zheng, Z. et al. Unconventional ferroelectricity in moire heterostructures. Nature 588, 71–76 (2020). (10.1038/s41586-020-2970-9) / Nature by Z Zheng (2020)
  10. Rogee, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022). (10.1126/science.abm5734) / Science by L Rogee (2022)
  11. Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022). (10.1038/s41467-022-35339-6) / Nat. Commun. by P Meng (2022)
  12. Sui, F. et al. Sliding ferroelectricity in van der Waals layered gamma-InSe semiconductor. Nat. Commun. 14, 36 (2023). (10.1038/s41467-022-35490-0) / Nat. Commun. by F Sui (2023)
  13. Li, W. et al. Emergence of ferroelectricity in a nonferroelectric monolayer. Nat. Commun. 14, 2757 (2023). (10.1038/s41467-023-38445-1)
  14. Yang, L., Ding, S., Gao, J. & Wu, M. Atypical sliding and Moiré ferroelectricity in pure multilayer graphene. Phys. Rev. Lett. 131, 096801 (2023). (10.1103/PhysRevLett.131.096801) / Phys. Rev. Lett. by L Yang (2023)
  15. Andersen, T. I. et al. Excitons in a reconstructed moire potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021). (10.1038/s41563-020-00873-5) / Nat. Mater. by TI Andersen (2021)
  16. Xu, B., Deng, J., Ding, X., Sun, J. & Liu, J. Z. Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides. npj Comput. Mater. 8, 47 (2022). (10.1038/s41524-022-00724-8) / npj Comput. Mater. by B Xu (2022)
  17. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018). (10.1021/acs.jpclett.8b03654) / J. Phys. Chem. Lett. by Q Yang (2018)
  18. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022). (10.1038/s41565-022-01072-w) / Nat. Nanotechnol. by A Weston (2022)
  19. Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2022). (10.1038/s41578-022-00484-3) / Nat. Rev. Mater. by D Zhang (2022)
  20. Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023). (10.1038/s41563-023-01595-0) / Nat. Mater. by K Ko (2023)
  21. Chen, Z., Wang, X., Ringer, S. P. & Liao, X. Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys. Rev. Lett. 117, 027601 (2016). (10.1103/PhysRevLett.117.027601) / Phys. Rev. Lett. by Z Chen (2016)
  22. Tao, J. et al. Reversible structure manipulation by tuning carrier concentration in metastable Cu2S. Proc. Natl. Acad. Sci. 114, 9832–9837 (2017). (10.1073/pnas.1709163114) / Proc. Natl. Acad. Sci. by J Tao (2017)
  23. Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2016). (10.1088/0034-4885/79/1/016501) / Rep. Prog. Phys. by N Jiang (2016)
  24. Jiang, N. Beam damage by the induced electric field in transmission electron microscopy. Micron 83, 79–92 (2016). (10.1016/j.micron.2016.02.007) / Micron by N Jiang (2016)
  25. Jiang, N. Note on in situ (scanning) transmission electron microscopy study of liquid samples. Ultramicroscopy 179, 81–83 (2017). (10.1016/j.ultramic.2017.04.012) / Ultramicroscopy by N Jiang (2017)
  26. Calderon, S. T. et al. Atomic-scale polarization switching in wurtzite ferroelectrics. Science 380, 1034–1038 (2023). (10.1126/science.adh7670) / Science by ST Calderon (2023)
  27. Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15, 1302–1308 (2015). (10.1021/nl5045082) / Nano Lett. by A Kushima (2015)
  28. Nutt, A. C. G., Gopalan, V. & Gupta, M. C. Domain inversion in LiNbO3 using direct electron-beam writing. Appl. Phys. Lett. 60, 2828–2830 (1992). (10.1063/1.106837) / Appl. Phys. Lett. by ACG Nutt (1992)
  29. Hart, J. L. et al. Electron-beam-induced ferroelectric domain behavior in the transmission electron microscope: Toward deterministic domain patterning. Phys. Rev. B 94, 174104 (2016). (10.1103/PhysRevB.94.174104) / Phys. Rev. B by JL Hart (2016)
  30. Hopkinson, D. G. et al. Formation and healing of defects in atomically thin GaSe and InSe. ACS Nano 13, 5112–5123 (2019). (10.1021/acsnano.8b08253) / ACS Nano by DG Hopkinson (2019)
  31. Wei, T. R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020). (10.1126/science.aba9778) / Science by TR Wei (2020)
  32. Jiang, N. Damage mechanisms in electron microscopy of insulating materials. J. Phys. D. Appl. Phys. 46, 305502 (2013). (10.1088/0022-3727/46/30/305502) / J. Phys. D. Appl. Phys. by N Jiang (2013)
  33. Hao, Q. et al. Phase identification and strong second harmonic generation in pure ε-InSe and its alloys. Nano Lett. 19, 2634–2640 (2019). (10.1021/acs.nanolett.9b00487) / Nano Lett. by Q Hao (2019)
  34. Xue, F. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 12, 4976–4983 (2018). (10.1021/acsnano.8b02152) / ACS Nano by F Xue (2018)
  35. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  36. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  38. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blochl (1994)
  39. Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011). (10.1103/PhysRevB.83.195131) / Phys. Rev. B by J Klimes (2011)
  40. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). (10.1063/1.1323224) / J. Chem. Phys. by G Henkelman (2000)
  41. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). (10.1063/1.1329672) / J. Chem. Phys. by G Henkelman (2000)
  42. Wei, S. H. Overcoming the doping bottleneck in semiconductors. Comput. Mater. Sci. 30, 337–348 (2004). (10.1016/j.commatsci.2004.02.024) / Comput. Mater. Sci. by SH Wei (2004)
Dates
Type When
Created 1 year, 3 months ago (May 7, 2024, 7:02 a.m.)
Deposited 1 year, 2 months ago (May 24, 2024, 11:32 p.m.)
Indexed 15 minutes ago (Aug. 20, 2025, 11:09 p.m.)
Issued 1 year, 3 months ago (May 7, 2024)
Published 1 year, 3 months ago (May 7, 2024)
Published Online 1 year, 3 months ago (May 7, 2024)
Funders 1
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 12134003

@article{Sui_2024, title={Atomic-level polarization reversal in sliding ferroelectric semiconductors}, volume={15}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-024-48218-z}, DOI={10.1038/s41467-024-48218-z}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Sui, Fengrui and Li, Haoyang and Qi, Ruijuan and Jin, Min and Lv, Zhiwei and Wu, Menghao and Liu, Xuechao and Zheng, Yufan and Liu, Beituo and Ge, Rui and Wu, Yu-Ning and Huang, Rong and Yue, Fangyu and Chu, Junhao and Duan, Chungang}, year={2024}, month=may }