Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractFerroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.

Bibliography

de la Barrera, S. C., Cao, Q., Gao, Y., Gao, Y., Bheemarasetty, V. S., Yan, J., Mandrus, D. G., Zhu, W., Xiao, D., & Hunt, B. M. (2021). Direct measurement of ferroelectric polarization in a tunable semimetal. Nature Communications, 12(1).

Authors 10
  1. Sergio C. de la Barrera (first)
  2. Qingrui Cao (additional)
  3. Yang Gao (additional)
  4. Yuan Gao (additional)
  5. Vineetha S. Bheemarasetty (additional)
  6. Jiaqiang Yan (additional)
  7. David G. Mandrus (additional)
  8. Wenguang Zhu (additional)
  9. Di Xiao (additional)
  10. Benjamin M. Hunt (additional)
References 34 Referenced 69
  1. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: “ferroelectric” metals? Phys. Rev. Lett. 14, 217 (1965). (10.1103/PhysRevLett.14.217) / Phys. Rev. Lett. by PW Anderson (1965)
  2. Rabe, K. M., Dawber, M., Lichtensteiger, C., Ahn, C. H., & Triscone, J. M. In Physics of Ferroelectrics, (eds Rabe, K. M., Ahn, C. H. & Triscone, J.-M.) Vol. 105, 1–30 (Springer, 2007).
  3. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024 (2013). (10.1038/nmat3754) / Nat. Mater. by Y Shi (2013)
  4. Liebmann, M. et al. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560 (2016). (10.1002/adma.201503459) / Adv. Mater. by M Liebmann (2016)
  5. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68 (2016). (10.1038/nature17628) / Nature by TH Kim (2016)
  6. Filippetti, A., Fiorentini, V., Ricci, F., Delugas, P. & Íñiguez, J. Prediction of a native ferroelectric metal. Nat. Commun. 7, 11211 (2016). (10.1038/ncomms11211) / Nat. Commun. by A Filippetti (2016)
  7. Benedek, N. A. & Birol, T. ‘Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C 4, 4000 (2016). (10.1039/C5TC03856A) / J. Mater. Chem. C by NA Benedek (2016)
  8. Rischau, C. W. et al. A ferroelectric quantum phase transition inside the superconducting dome of Sr1−xCaxTiO3−δ. Nat. Phys. 13, 643 (2017). (10.1038/nphys4085) / Nat. Phys. by CW Rischau (2017)
  9. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1 (2019). (10.1038/s41467-018-07882-8) / Nat. Commun. by S Yuan (2019)
  10. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018). (10.1038/s41586-018-0336-3) / Nature by Z Fei (2018)
  11. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019). (10.1126/sciadv.aax5080) / Sci. Adv. by P Sharma (2019)
  12. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028 (2020). (10.1038/s41567-020-0947-0) / Nat. Phys. by J Xiao (2020)
  13. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76 (2018). (10.1126/science.aan6003) / Science by S Wu (2018)
  14. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926 (2018). (10.1126/science.aar4642) / Science by V Fatemi (2018)
  15. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922 (2018). (10.1126/science.aar4426) / Science by E Sajadi (2018)
  16. Xu, S. Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900 (2018). (10.1038/s41567-018-0189-6) / Nat. Phys. by SY Xu (2018)
  17. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337 (2019). (10.1038/s41586-018-0807-6) / Nature by Q Ma (2019)
  18. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160 (2018). (10.1021/acs.jpclett.8b03654) / J. Phys. Chem. Lett. by Q Yang (2018)
  19. Liu, X. et al. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale 11, 18575 (2019). (10.1039/C9NR05404A) / Nanoscale by X Liu (2019)
  20. Wang, L. et al. Direct observation of a long-range field effect from gate tuning of nonlocal conductivity. Phys. Rev. Lett. 117, 176601 (2016). (10.1103/PhysRevLett.117.176601) / Phys. Rev. Lett. by L Wang (2016)
  21. Young, A. F. & Levitov, L. S. Capacitance of graphene bilayer as a probe of layer-specific properties. Phys. Rev. B 84, 085441 (2011). (10.1103/PhysRevB.84.085441) / Phys. Rev. B by AF Young (2011)
  22. Hunt, B. M. et al. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene. Nat. Commun. 8, 948 (2017). (10.1038/s41467-017-00824-w)
  23. Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416 (2018). (10.1021/acs.nanolett.7b05161) / Nano Lett. by EJ Telford (2018)
  24. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677 (2017). (10.1038/nphys4091) / Nat. Phys. by Z Fei (2017)
  25. Young, A. F. et al. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 85, 235458 (2012). (10.1103/PhysRevB.85.235458) / Phys. Rev. B by AF Young (2012)
  26. Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer wte2. Phys. Rev. Lett. 121, 266601 (2018). (10.1103/PhysRevLett.121.266601) / Phys. Rev. Lett. by ZZ Du (2018)
  27. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382 (2017). (10.1021/acsnano.7b02756) / ACS Nano by L Li (2017)
  28. Zheng, Z. et al. Unconventional ferroelectricity in Moiré heterostructures. Nature 588, 71 (2020). (10.1038/s41586-020-2970-9) / Nature by Z Zheng (2020)
  29. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458 (2021). (10.1126/science.abd3230) / Science by K Yasuda (2021)
  30. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462 (2021). (10.1126/science.abe8177) / Science by M Vizner Stern (2021)
  31. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021). (10.1038/s41467-020-20667-2) / Nat. Commun. by CR Woods (2021)
  32. Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021). (10.1103/PhysRevB.103.155142) / Phys. Rev. B by Y Zhang (2021)
  33. Wang, Y. et al. Tunable ferroelectricity in hBN intercalated twisted double-layer graphene. Preprint at https://arxiv.org/abs/2102.12398 (2021).
  34. Muechler, L., Alexandradinata, A., Neupert, T. & Car, R. Topological nonsymmorphic metals from band inversion. Phys. Rev. X 6, 041069 (2016). / Phys. Rev. X by L Muechler (2016)
Dates
Type When
Created 3 years, 11 months ago (Sept. 6, 2021, 6:04 a.m.)
Deposited 2 years, 8 months ago (Dec. 2, 2022, 9:18 a.m.)
Indexed 3 days, 16 hours ago (Aug. 23, 2025, 9:51 p.m.)
Issued 3 years, 11 months ago (Sept. 6, 2021)
Published 3 years, 11 months ago (Sept. 6, 2021)
Published Online 3 years, 11 months ago (Sept. 6, 2021)
Funders 1
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-SC0018115

@article{de_la_Barrera_2021, title={Direct measurement of ferroelectric polarization in a tunable semimetal}, volume={12}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-021-25587-3}, DOI={10.1038/s41467-021-25587-3}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={de la Barrera, Sergio C. and Cao, Qingrui and Gao, Yang and Gao, Yuan and Bheemarasetty, Vineetha S. and Yan, Jiaqiang and Mandrus, David G. and Zhu, Wenguang and Xiao, Di and Hunt, Benjamin M.}, year={2021}, month=sep }