Abstract
AbstractFailure of polarization reversal, i.e., ferroelectric degradation, induced by cyclic electric loadings in ferroelectric materials, has been a long-standing challenge that negatively impacts the application of ferroelectrics in devices where reliability is critical. It is generally believed that space charges or injected charges dominate the ferroelectric degradation. However, the physics behind the phenomenon remains unclear. Here, using in-situ biasing transmission electron microscopy, we discover change of charge distribution in thin ferroelectrics during cyclic electric loadings. Charge accumulation at domain walls is the main reason of the formation of c domains, which are less responsive to the applied electric field. The rapid growth of the frozen c domains leads to the ferroelectric degradation. This finding gives insights into the nature of ferroelectric degradation in nanodevices, and reveals the role of the injected charges in polarization reversal.
Authors
11
- Qianwei Huang (first)
- Zibin Chen (additional)
- Matthew J. Cabral (additional)
- Feifei Wang (additional)
- Shujun Zhang (additional)
- Fei Li (additional)
- Yulan Li (additional)
- Simon P. Ringer (additional)
- Haosu Luo (additional)
- Yiu-Wing Mai (additional)
- Xiaozhou Liao (additional)
References
47
Referenced
46
-
Uchino, K. Ferroelectric Devices (CRC press, 2018).
(
10.1201/b15852
) - Scott, J. F. Ferroelectric Memories (Springer Science & Business Media, 2013).
-
Sato, Y., Hirayama, T. & Ikuhara, Y. Real-time direct observations of polarization reversal in a piezoelectric crystal: Pb (Mg 1/3 Nb 2/3) O 3− PbTiO 3 studied via in situ electrical biasing transmission electron microscopy. Phys. Rev. Lett. 107, 187601 (2011).
(
10.1103/PhysRevLett.107.187601
) / Phys. Rev. Lett. by Y Sato (2011) -
Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).
(
10.1126/sciadv.1700512
) / Sci. Adv. by P Sharma (2017) - Lupascu, D. C. Fatigue in Ferroelectric Ceramics and Related Issues (Springer Science & Business Media, 2013).
-
Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).
(
10.1088/0034-4885/61/9/002
) / Rep. Prog. Phys. by D Damjanovic (1998) -
Lou, X. J. Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105, 024101 (2009).
(
10.1063/1.3056603
) / J. Appl. Phys. by XJ Lou (2009) -
Nuffer, J., Lupascu, D. & Rödel, J. Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48, 3783–3794 (2000).
(
10.1016/S1359-6454(00)00173-7
) / Acta Mater. by J Nuffer (2000) -
Lou, X. et al. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: experimental evidence and implications. Appl. Phys. Lett. 105, 102907 (2014).
(
10.1063/1.4895616
) / Appl. Phys. Lett. by X Lou (2014) -
Lupascu, D. C., Fedosov, S., Verdier, C., Rödel, J. & von Seggern, H. Stretched exponential relaxation in perovskite ferroelectrics after cyclic loading. J. Appl. Phys. 95, 1386–1390 (2004).
(
10.1063/1.1636528
) / J. Appl. Phys. by DC Lupascu (2004) -
Guo, H., Tan, X. & Zhang, S. In situ TEM study on the microstructural evolution during electric fatigue in 0.7 Pb (Mg 1/3 Nb 2/3) O 3–0.3 PbTiO 3 ceramic. J. Mater. Res. 30, 364–372 (2015).
(
10.1557/jmr.2014.228
) / J. Mater. Res. by H Guo (2015) -
Warren, W., Dimos, D., Tuttle, B., Nasby, R. & Pike, G. Electronic domain pinning in Pb (Zr, Ti) O3 thin films and its role in fatigue. Appl. Phys. Lett. 65, 1018–1020 (1994).
(
10.1063/1.112211
) / Appl. Phys. Lett. by W Warren (1994) -
Guo, H., Liu, X., Rödel, J. & Tan, X. Nanofragmentation of ferroelectric domains during polarization fatigue. Adv. Funct. Mater. 25, 270–277 (2015).
(
10.1002/adfm.201402740
) / Adv. Funct. Mater. by H Guo (2015) -
Yang, S. M., Kim, T. H., Yoon, J. G. & Noh, T. W. Nanoscale observation of time‐dependent domain wall pinning as the origin of polarization fatigue. Adv. Funct. Mater. 22, 2310–2317 (2012).
(
10.1002/adfm.201102685
) / Adv. Funct. Mater. by SM Yang (2012) -
Jiang, A., Lin, Y. & Tang, T. Coexisting depinning effect of domain walls during the fatigue in ferroelectric thin films. Appl. Phys. Lett. 89, 032906 (2006).
(
10.1063/1.2227626
) / Appl. Phys. Lett. by A Jiang (2006) -
Yuan, G. et al. Low-temperature switching fatigue behavior of ferroelectric SrBi 2 Ta 2 O 9 thin films. Appl. Phys. Lett. 84, 954–956 (2004).
(
10.1063/1.1644056
) / Appl. Phys. Lett. by G Yuan (2004) -
Genenko, Y. A., Glaum, J., Hoffmann, M. J. & Albe, K. Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52–82 (2015).
(
10.1016/j.mseb.2014.10.003
) / Mater. Sci. Eng. B by YA Genenko (2015) -
Nuffer, J., Lupascu, D. C., Glazounov, A., Kleebe, H.-J. & Rödel, J. Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue. J. Eur. Ceram. Soc. 22, 2133–2142 (2002).
(
10.1016/S0955-2219(02)00017-1
) / J. Eur. Ceram. Soc. by J Nuffer (2002) -
Zhang, S. et al. Polarization fatigue in Pb (In0. 5Nb0. 5) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 single crystals. Acta Mater. 58, 3773–3780 (2010).
(
10.1016/j.actamat.2010.03.018
) / Acta Mater. by S Zhang (2010) -
Ievlev, A. V. et al. Non-conventional mechanism of ferroelectric fatigue via cation migration. Nat. Commun. 10, 3064 (2019).
(
10.1038/s41467-019-11089-w
) / Nat. Commun. by AV Ievlev (2019) -
Wu, M. et al. Fatigue mechanism verified using photovoltaic properties of Pb (Zr0. 52Ti0. 48) O3 thin films. Appl. Phys. Lett. 110, 133903 (2017).
(
10.1063/1.4979525
) / Appl. Phys. Lett. by M Wu (2017) -
Zou, X. et al. Mechanism of polarization fatigue in BiFeO3. ACS Nano 6, 8997–9004 (2012).
(
10.1021/nn303090k
) / ACS Nano by X Zou (2012) -
Zhang, Y. et al. Deterministic ferroelastic domain switching using ferroelectric bilayers. Nano Lett. 19, 5319–5326 (2019).
(
10.1021/acs.nanolett.9b01782
) / Nano Lett. by Y Zhang (2019) -
Li, X. et al. Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure. Proc. Natl. Acad. Sci. 117, 18954–18961 (2020).
(
10.1073/pnas.2007248117
) / Proc. Natl. Acad. Sci. by X Li (2020) -
Li, L. et al. Atomic-scale mechanisms of defect-induced retention failure in ferroelectrics. Nano Lett. 17, 3556–3562 (2017).
(
10.1021/acs.nanolett.7b00696
) / Nano Lett. by L Li (2017) -
Gong, Y. et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nat. Commun. 9, 1–8 (2018).
(
10.1038/s41467-018-05833-x
) / Nat. Commun. by Y Gong (2018) -
Cao, H. & Luo, H. Elastic, piezoelectric and dielectric properties of Pb (Mg 1/3 Nb 2/3) O 3-38% PbTiO 3 single crystal. Ferroelectrics 274, 309–315 (2002).
(
10.1080/00150190213965
) / Ferroelectrics by H Cao (2002) -
Chen, Z. et al. Stress-induced reversible and irreversible ferroelectric domain switching. Appl. Phys. Lett. 112, 152901 (2018).
(
10.1063/1.5020534
) / Appl. Phys. Lett. by Z Chen (2018) -
Chen, Z. et al. Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures. Phys. Rev. Lett. 118, 017601 (2017).
(
10.1103/PhysRevLett.118.017601
) / Phys. Rev. Lett. by Z Chen (2017) -
Garza, H. H. P. et al. MEMS-based sample carriers for simultaneous heating and biasing experiments: a platform for in-situ TEM analysis. In: 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)) (IEEE, 2017).
(
10.1109/TRANSDUCERS.2017.7994502
) -
Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).
(
10.1038/nature18286
) / Nature by S Liu (2016) -
Li, W., Chen, A., Lu, X. & Zhu, J. Collective domain-wall pinning of oxygen vacancies in bismuth titanate ceramics. J. Appl. Phys. 98, 024109 (2005).
(
10.1063/1.1984071
) / J. Appl. Phys. by W Li (2005) -
Gao, W. et al. Real-space charge-density imaging with sub-ångstrom resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).
(
10.1038/s41586-019-1649-6
) / Nature by W Gao (2019) -
Shibata, N. et al. Electric field imaging of single atoms. Nat. Commun. 8, 15631 (2017).
(
10.1038/ncomms15631
) / Nat. Commun. by N Shibata (2017) -
Shibata, N. et al. Imaging of built-in electric field at a pn junction by scanning transmission electron microscopy. Sci. Rep. 5, 1–8 (2015).
(
10.1038/srep10040
) / Sci. Rep. by N Shibata (2015) -
Wei, J. et al. Direct measurement of electronic band structures at oxide grain boundaries. Nano Lett. 20, 2530–2536 (2020).
(
10.1021/acs.nanolett.9b05298
) / Nano Lett. by J Wei (2020) -
Meng, Q. et al. Quantification of charge transfer at the interfaces of oxide thin films. J. Phys. Chem. A 123, 4632–4637 (2019).
(
10.1021/acs.jpca.9b02802
) / J. Phys. Chem. A by Q Meng (2019) -
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).
(
10.1103/RevModPhys.84.119
) / Rev. Mod. Phys. by G Catalan (2012) -
Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nat. Commun. 4, 2791 (2013).
(
10.1038/ncomms3791
) / Nat. Commun. by P Gao (2013) -
Sluka, T., Bednyakov, P., Yudin, P., Crassous A. & Tagantsev, A. Charged domain walls in ferroelectrics. In: Topological Structures in Ferroic Materials (Springer, 2016).
(
10.1007/978-3-319-25301-5_5
) -
Mokrý, P., Tagantsev, A. & Fousek, J. Pressure on charged domain walls and additional imprint mechanism in ferroelectrics. Phys. Rev. B 75, 094110 (2007).
(
10.1103/PhysRevB.75.094110
) / Phys. Rev. B by P Mokrý (2007) -
Gao, P. et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011).
(
10.1038/ncomms1600
) / Nat. Commun. by P Gao (2011) -
Chen, Z. et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci. Adv. 6, eabc7156 (2020).
(
10.1126/sciadv.abc7156
) / Sci. Adv. by Z Chen (2020) -
Zhang, S., Xia, R., Hao, H., Liu, H. & Shrout, T. R. Mitigation of thermal and fatigue behavior in K0.5 Na0.5 Nb O3-based lead free piezoceramics. Appl. Phys. Lett. 92, 152904 (2008).
(
10.1063/1.2908960
) / Appl. Phys. Lett. by S Zhang (2008) -
Ke, Q. et al. Microstructural evolution of charged defects in the fatigue process of polycrystalline BiFeO3 thin films. Acta Mater. 82, 190–197 (2015).
(
10.1016/j.actamat.2014.08.058
) / Acta Mater. by Q Ke (2015) - Dekkers, N. & De Lang, H. Differential phase contrast in a STEM. Optik 41, 452–456 (1974). / Optik by N Dekkers (1974)
-
Lazić, I., Bosch, E. G. & Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).
(
10.1016/j.ultramic.2015.10.011
) / Ultramicroscopy by I Lazić (2016)
Dates
Type | When |
---|---|
Created | 4 years, 4 months ago (April 7, 2021, 6:12 a.m.) |
Deposited | 2 years, 6 months ago (Jan. 30, 2023, 5:04 p.m.) |
Indexed | 2 days ago (Aug. 19, 2025, 6:41 a.m.) |
Issued | 4 years, 4 months ago (April 7, 2021) |
Published | 4 years, 4 months ago (April 7, 2021) |
Published Online | 4 years, 4 months ago (April 7, 2021) |
@article{Huang_2021, title={Direct observation of nanoscale dynamics of ferroelectric degradation}, volume={12}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-021-22355-1}, DOI={10.1038/s41467-021-22355-1}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Huang, Qianwei and Chen, Zibin and Cabral, Matthew J. and Wang, Feifei and Zhang, Shujun and Li, Fei and Li, Yulan and Ringer, Simon P. and Luo, Haosu and Mai, Yiu-Wing and Liao, Xiaozhou}, year={2021}, month=apr }