Abstract
AbstractThe limited memory retention for a ferroelectric field-effect transistor has prevented the commercialization of its nonvolatile memory potential using the commercially available ferroelectrics. Here, we show a long-retention ferroelectric transistor memory cell featuring a metal-ferroelectric-metal-insulator-semiconductor architecture built from all van der Waals single crystals. Our device exhibits 17 mV dec−1 operation, a memory window larger than 3.8 V, and program/erase ratio greater than 107. Thanks to the trap-free interfaces and the minimized depolarization effects via van der Waals engineering, more than 104 cycles endurance, a 10-year memory retention and sub-5 μs program/erase speed are achieved. A single pulse as short as 100 ns is enough for polarization reversal, and a 4-bit/cell operation of a van der Waals ferroelectric transistor is demonstrated under a 100 ns pulse train. These device characteristics suggest that van der Waals engineering is a promising direction to improve ferroelectronic memory performance and reliability for future applications.
Authors
13
- Xiaowei Wang (first)
- Chao Zhu (additional)
- Ya Deng (additional)
- Ruihuan Duan (additional)
- Jieqiong Chen (additional)
- Qingsheng Zeng (additional)
- Jiadong Zhou (additional)
- Qundong Fu (additional)
- Lu You (additional)
- Song Liu (additional)
- James H. Edgar (additional)
- Peng Yu (additional)
- Zheng Liu (additional)
References
46
Referenced
190
-
Park, B. E., Ishiwara, H., Okuyama, M., Sakai, S. Yoon, S. M. Ferroelectric-Gate Field Effect Transistor Memories (Springer, 2016).
(
10.1007/978-94-024-0841-6
) -
Das, S. & Appenzeller, J. FETRAM. An organic ferroelectric material based novel random access memory cell. Nano Lett. 11, 4003–4007 (2011).
(
10.1021/nl2023993
) / Nano Lett. by S Das (2011) -
Tian, B. B. et al. Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 7, 11502 (2016).
(
10.1038/ncomms11502
) / Nat. Commun. by BB Tian (2016) -
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
(
10.1021/nl071804g
) / Nano Lett. by S Salahuddin (2008) -
Smith, S. W. et al. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films. Appl. Phys. Lett. 110, 072901 (2017).
(
10.1063/1.4976519
) / Appl. Phys. Lett. by SW Smith (2017) -
Balakrishna, A. R., Huber, J. E. & Landis, C. M. Nano-actuator concepts based on ferroelectric switching. Smart Mater. Struct. 23, 085016 (2014).
(
10.1088/0964-1726/23/8/085016
) / Smart Mater. Struct. by AR Balakrishna (2014) -
Miller, S. L. & McWhorter, P. J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999–6010 (1992).
(
10.1063/1.351910
) / J. Appl. Phys. by SL Miller (1992) -
Hoffman, J. et al. Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010).
(
10.1002/adma.200904327
) / Adv. Mater. by J Hoffman (2010) -
Black, C. T., Farrell, C. & Licata, T. J. Suppression of ferroelectric polarization by an adjustable depolarization field. Appl. Phys. Lett. 71, 2041–2043 (1997).
(
10.1063/1.119781
) / Appl. Phys. Lett. by CT Black (1997) -
Takahashi, M. et al. Analysis and improvement of retention time of memorized state of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory. Jpn. J. Appl. Phys. 40, 2923–2927 (2001).
(
10.1143/JJAP.40.2923
) / Jpn. J. Appl. Phys. by M Takahashi (2001) -
Ma, T. P. & Jin-Ping, H. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Dev. Lett. 23, 386–388 (2002).
(
10.1109/LED.2002.1015207
) / IEEE Electron. Dev. Lett. by TP Ma (2002) -
Fan, Z., Chen, J. & Wang, J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielect. 6, 1630003 (2016).
(
10.1142/S2010135X16300036
) / J. Adv. Dielect. by Z Fan (2016) -
Singamaneni, S. R., Prater, J. T. & Narayan, J. Multifunctional epitaxial systems on silicon substrates. Appl. Phys. Rev. 3, 031301 (2016).
(
10.1063/1.4955413
) / Appl. Phys. Rev. by SR Singamaneni (2016) -
Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl. 2, 18 (2018).
(
10.1038/s41699-018-0063-5
) / NPJ 2D Mater. Appl. by C Cui (2018) -
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
(
10.1038/ncomms12357
) / Nat. Commun. by F Liu (2016) -
Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).
(
10.1038/s41467-019-10738-4
) / Nat. Commun. by X Wang (2019) -
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by KS Novoselov (2004) -
Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).
(
10.1038/s41586-018-0008-3
) / Nature by J Zhou (2018) -
Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).
(
10.1021/acs.chemmater.8b02589
) / Chem. Mater. by S Liu (2018) -
Ma, T. P. & Gong, N. Retention and endurance of FeFET memory cells. 2019 IEEE 11th International Memory Workshop (IMW). 1–4 (2019).
(
10.1109/IMW.2019.8739726
) -
Gong, N. & Ma, T. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron. Dev. Lett. 37, 1123–1126 (2016).
(
10.1109/LED.2016.2593627
) / IEEE Electron. Dev. Lett. by N Gong (2016) -
Wang, X. et al. Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. NPJ 2D Mater. Appl. 1, 38 (2017).
(
10.1038/s41699-017-0040-4
) / NPJ 2D Mater. Appl. by X Wang (2017) -
Chyasnavichyus, M. et al. Size-effect in layered ferrielectric CuInP2S6. Appl. Phys. Lett. 109, 172901 (2016).
(
10.1063/1.4965837
) / Appl. Phys. Lett. by M Chyasnavichyus (2016) -
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
(
10.1088/2053-1583/1/1/011002
) / 2D Mater. by A Castellanos-Gomez (2014) -
Tanaka, H., Kaneko, Y. & Kato, Y. A ferroelectric gate field effect transistor with a ZnO/Pb(Zr,Ti)O3 heterostructure formed on a silicon substrate. Jpn. J. Appl. Phys. 47, 7527–7532 (2008).
(
10.1143/JJAP.47.7527
) / Jpn. J. Appl. Phys. by H Tanaka (2008) -
Yu, B. G., Lee, W. J., Cho, C. R., Shin, C. H. & Kim, B. W. The effect of annealing temperature on electrical properties of SrBi2Ta2O9/insulators/Si(MFIS) structure for NDRO-type FRAM devices. Cryst. Res. Technol. 34, 1197–1204 (1999).
(
10.1002/(SICI)1521-4079(199911)34:9<1197::AID-CRAT1197>3.0.CO;2-N
) / Cryst. Res. Technol. by BG Yu (1999) -
Choi, K. et al. Trap density probing on top-gate MoS2 nanosheet field-effect transistors by photo-excited charge collection spectroscopy. Nanoscale 7, 5617–5623 (2015).
(
10.1039/C4NR06707J
) / Nanoscale by K Choi (2015) -
Chiu, Y. et al. Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85 °C-extrapolated 1016 endurance. Symp. VLSI Tech. 184–185 (2015).
(
10.1109/VLSIT.2015.7223671
) -
Shen, P.-C., Lin, C., Wang, H., Teo, K. H. & Kong, J. Ferroelectric memory field-effect transistors using CVD monolayer MoS2 as resistive switching channel. Appl. Phys. Lett. 116, 033501 (2020).
(
10.1063/1.5129963
) / Appl. Phys. Lett. by P-C Shen (2020) -
Horiuchi, T., Takahashi, M., Ohhashi, K. & Sakai, S. Memory window widening of Pt/SrBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by nitriding Si. Semicond. Sci. Technol. 24, 105026 (2009).
(
10.1088/0268-1242/24/10/105026
) / Semicond. Sci. Technol. by T Horiuchi (2009) -
Wang, X. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater. 4, 025036 (2017).
(
10.1088/2053-1583/aa5c17
) / 2D Mater. by X Wang (2017) -
Kaneko, Y. et al. Correlated motion dynamics of electron channels and domain walls in a ferroelectric-gate thin-film transistor consisting of a ZnO/Pb(Zr,Ti)O3 stacked structure. J. Appl. Phys. 110, 084106 (2011).
(
10.1063/1.3651098
) / J. Appl. Phys. by Y Kaneko (2011) -
Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 4, 243–248 (2005).
(
10.1038/nmat1329
) / Nat. Mater. by RCG Naber (2005) -
Yoon, S. et al. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor. IEEE Trans. Electron. Dev. 58, 2135–2142 (2011).
(
10.1109/TED.2011.2139212
) / IEEE Trans. Electron. Dev. by S Yoon (2011) -
Pan, X. & Ma, T. P. Retention mechanism study of the ferroelectric field effect transistor. Appl. Phys. Lett. 99, 013505 (2011).
(
10.1063/1.3609323
) / Appl. Phys. Lett. by X Pan (2011) -
Maisonneuve, V., Cajipe, V. B., Simon, A., Von Der Muhll, R. & Ravez, J. Ferrielectric ordering in lamellar CuInP2S6. Phys. Rev. B 56, 10860–10868 (1997).
(
10.1103/PhysRevB.56.10860
) / Phys. Rev. B by V Maisonneuve (1997) -
Si, M. et al. Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration. ACS Nano 13, 8760–8765 (2019).
(
10.1021/acsnano.9b01491
) / ACS Nano by M Si (2019) -
Migita, S., Ota, H. & Toriumi, A. Design points of ferroelectric field-effect transistors for memory and logic applications as investigated by metal-ferroelectric-metal-insulator-semiconductor gate stack structures using Hf0.5Zr0.5O2 films. Jpn. J. Appl. Phys. 58, SLLB06 (2019).
(
10.7567/1347-4065/ab389b
) / Jpn. J. Appl. Phys. by S Migita (2019) -
Vu, Q. A. et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 5, 031001 (2018).
(
10.1088/2053-1583/aab672
) / 2D Mater. by QA Vu (2018) -
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).
(
10.1038/nnano.2015.70
) / Nat. Nanotech. by X Cui (2015) -
Besleaga, C. et al. Ferroelectric field effect transistors based on PZT and IGZO. IEEE J. Electron Devices Soc. 7, 268–275 (2019).
(
10.1109/JEDS.2019.2895367
) / IEEE J. Electron Devices Soc. by C Besleaga (2019) -
Kaneko, Y., Tanaka, H. & Kato, Y. NOR-type nonvolatile ferroelectric-gate memory cell using composite oxide technology. Jpn. J. Appl. Phys. 48, 09KA19 (2009).
(
10.1143/JJAP.48.09KA19
) / Jpn. J. Appl. Phys. by Y Kaneko (2009) -
Dünkel, S. et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. IEDM 19.17.11–19.17.14 (2017).
(
10.1109/IEDM.2017.8268425
) -
Trentzsch, M. et al. A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs. IEDM 11.5.1–11.5.4 (2016).
(
10.1109/IEDM.2016.7838397
) -
Chatterjee, K. et al. Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf0.8Zr0.2O2, high endurance and breakdown recovery. IEEE Electron. Dev. Lett. 38, 1379–1382 (2017).
(
10.1109/LED.2017.2748992
) / IEEE Electron. Dev. Lett. by K Chatterjee (2017) -
Chen, K. et al. Non-volatile ferroelectric FETs using 5-nm Hf0.5Zr0.5O2 with high data retention and read endurance for 1T memory applications. IEEE Electron. Dev. Lett. 40, 399–402 (2019).
(
10.1109/LED.2019.2896231
) / IEEE Electron. Dev. Lett. by K Chen (2019)
Dates
Type | When |
---|---|
Created | 4 years, 6 months ago (Feb. 19, 2021, 11:46 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 29, 2023, 2:05 a.m.) |
Indexed | 17 hours, 7 minutes ago (Aug. 29, 2025, 5:51 a.m.) |
Issued | 4 years, 6 months ago (Feb. 17, 2021) |
Published | 4 years, 6 months ago (Feb. 17, 2021) |
Published Online | 4 years, 6 months ago (Feb. 17, 2021) |
@article{Wang_2021, title={Van der Waals engineering of ferroelectric heterostructures for long-retention memory}, volume={12}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-021-21320-2}, DOI={10.1038/s41467-021-21320-2}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wang, Xiaowei and Zhu, Chao and Deng, Ya and Duan, Ruihuan and Chen, Jieqiong and Zeng, Qingsheng and Zhou, Jiadong and Fu, Qundong and You, Lu and Liu, Song and Edgar, James H. and Yu, Peng and Liu, Zheng}, year={2021}, month=feb }