Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractField induced domain wall displacements define ferroelectric/ferroelastic hysteresis loops, which are at the core of piezoelectric, magnetoelectric and memristive devices. These collective displacements are scale invariant jumps with avalanche characteristics. Here, we analyse the spatial distribution of avalanches in ferroelectrics with different domain and transformation patterns: Pb(Mg1/3Nb2/3)O3–PbTiO3 contains complex domains with needles and junction patterns, while BaTiO3 has parallel straight domains. Nevertheless, their avalanche characteristics are indistinguishable. The energies, areas and perimeters of the switched regions are power law distributed with exponents close to predicted mean field values. At the coercive field, the area exponent decreases, while the fractal dimension increases. This fine structure of the switching process has not been detected before and suggests that switching occurs via criticality at the coercive field with fundamentally different switching geometries at and near this critical point. We conjecture that the domain switching process in ferroelectrics is universal at the coercive field.

Bibliography

Casals, B., Nataf, G. F., & Salje, E. K. H. (2021). Avalanche criticality during ferroelectric/ferroelastic switching. Nature Communications, 12(1).

Authors 3
  1. Blai Casals (first)
  2. Guillaume F. Nataf (additional)
  3. Ekhard K. H. Salje (additional)
References 65 Referenced 43
  1. Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016). (10.1038/nature18286) / Nature by S Liu (2016)
  2. Shin, Y.-H., Grinberg, I., Chen, I.-W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007). (10.1038/nature06165) / Nature by Y-H Shin (2007)
  3. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011). (10.1126/science.1206980) / Science by CT Nelson (2011)
  4. Xu, R. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79–86 (2015). (10.1038/nmat4119) / Nat. Mater. by R Xu (2015)
  5. Ghosh, D. et al. Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Funct. Mater. 24, 885–896 (2014). (10.1002/adfm.201301913) / Adv. Funct. Mater. by D Ghosh (2014)
  6. Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018). (10.1038/s41563-018-0034-4) / Nat. Mater. by F Li (2018)
  7. Ghidini, M. et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat. Mater. 18, 840–845 (2019). (10.1038/s41563-019-0374-8) / Nat. Mater. by M Ghidini (2019)
  8. Fusil, S., Garcia, V., Barthélémy, A. & Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014). (10.1146/annurev-matsci-070813-113315) / Annu. Rev. Mater. Res. by S Fusil (2014)
  9. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). (10.1038/nature05023) / Nature by W Eerenstein (2006)
  10. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017). (10.1126/sciadv.1700512) / Sci. Adv. by P Sharma (2017)
  11. Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018). (10.1038/nmat5028) / Nat. Mater. by J Jiang (2018)
  12. Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020). (10.1038/s41467-020-16623-9) / Nat. Commun. by X Chai (2020)
  13. Salje, E. K. H., Wang, X., Ding, X. & Scott, J. F. Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink movements. Adv. Funct. Mater. 27, 1700367 (2017). (10.1002/adfm.201700367) / Adv. Funct. Mater. by EKH Salje (2017)
  14. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  15. Sharma, P., Schoenherr, P. & Seidel, J. Functional ferroic domain walls for nanoelectronics. Materials (Basel). 12, 2927 (2019). (10.3390/ma12182927) / Materials (Basel). by P Sharma (2019)
  16. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010). (10.1002/cphc.200900943) / ChemPhysChem by EKH Salje (2010)
  17. Nataf, G. F. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2, 634–648 (2020). (10.1038/s42254-020-0235-z) / Nat. Rev. Phys. by GF Nataf (2020)
  18. Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn 31, 506–510 (1971). (10.1143/JPSJ.31.506) / J. Phys. Soc. Jpn by Y Ishibashi (1971)
  19. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nat. Commun. 4, 2791 (2013). (10.1038/ncomms3791) / Nat. Commun. by P Gao (2013)
  20. McGilly, L. J., Sandu, C. S., Feigl, L., Damjanovic, D. & Setter, N. Nanoscale defect engineering and the resulting effects on domain wall dynamics in ferroelectric thin films. Adv. Funct. Mater. 27, 1605196 (2017). (10.1002/adfm.201605196) / Adv. Funct. Mater. by LJ McGilly (2017)
  21. Li, J. Y., Rogan, R. C., Üstündag, E. & Bhattacharya, K. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776–781 (2005). (10.1038/nmat1485) / Nat. Mater. by JY Li (2005)
  22. Salje, E. K. H., Xue, D., Ding, X., Dahmen, K. A. & Scott, J. F. Ferroelectric switching and scale invariant avalanches in BaTiO3. Phys. Rev. Mater. 3, 014415 (2019). (10.1103/PhysRevMaterials.3.014415) / Phys. Rev. Mater. by EKH Salje (2019)
  23. Robert, G., Damjanovic, D., Setter, N. & Turik, A. V. Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics. J. Appl. Phys. 89, 5067–5074 (2001). (10.1063/1.1359166) / J. Appl. Phys. by G Robert (2001)
  24. Gruverman, A. et al. Nanoscale imaging of domain dynamics and retention in ferroelectric thin films. Appl. Phys. Lett. 71, 3492–3494 (1997). (10.1063/1.120369) / Appl. Phys. Lett. by A Gruverman (1997)
  25. Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017). (10.1038/ncomms14736) / Nat. Commun. by S Boyn (2017)
  26. Mallinson, J. B. et al. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv. 5, eaaw8438 (2019). (10.1126/sciadv.aaw8438) / Sci. Adv. by JB Mallinson (2019)
  27. Cramer, B. et al. Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun. 11, 2853 (2020). (10.1038/s41467-020-16548-3) / Nat. Commun. by B Cramer (2020)
  28. Wilting, J. & Priesemann, V. 25 years of criticality in neuroscience—established results, open controversies, novel concepts. Curr. Opin. Neurobiol. 58, 105–111 (2019). (10.1016/j.conb.2019.08.002) / Curr. Opin. Neurobiol. by J Wilting (2019)
  29. Salje, E. K. H. & Dahmen, K. A. Crackling noise in disordered materials. Annu. Rev. Condens. Matter Phys. 5, 233–254 (2014). (10.1146/annurev-conmatphys-031113-133838) / Annu. Rev. Condens. Matter Phys. by EKH Salje (2014)
  30. Zhao, Z., Ding, X., Lookman, T., Sun, J. & Salje, E. K. H. Mechanical loss in multiferroic materials at high frequencies: friction and the evolution of ferroelastic microstructures. Adv. Mater. 25, 3244–3248 (2013). (10.1002/adma.201300655) / Adv. Mater. by Z Zhao (2013)
  31. Ding, X., Zhao, Z., Lookman, T., Saxena, A. & Salje, E. K. H. High junction and twin boundary densities in driven dynamical systems. Adv. Mater. 24, 5385–5389 (2012). (10.1002/adma.201200986) / Adv. Mater. by X Ding (2012)
  32. Gonnissen, J. et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Adv. Funct. Mater. 26, 7599–7604 (2016). (10.1002/adfm.201603489) / Adv. Funct. Mater. by J Gonnissen (2016)
  33. He, X. et al. The interaction between vacancies and twin walls, junctions, and kinks, and their mechanical properties in ferroelastic materials. Acta Mater. 178, 26–35 (2019). (10.1016/j.actamat.2019.07.051) / Acta Mater. by X He (2019)
  34. Ferrero, E. E., Foini, L., Giamarchi, T., Kolton, A. B. & Rosso, A. Spatiotemporal patterns in ultraslow domain wall creep dynamics. Phys. Rev. Lett. 118, 147208 (2017). (10.1103/PhysRevLett.118.147208) / Phys. Rev. Lett. by EE Ferrero (2017)
  35. Niemann, R. et al. Localizing sources of acoustic emission during the martensitic transformation. Phys. Rev. B 89, 214118 (2014). (10.1103/PhysRevB.89.214118) / Phys. Rev. B by R Niemann (2014)
  36. Balandraud, X., Barrera, N., Biscari, P., Grédiac, M. & Zanzotto, G. Strain intermittency in shape-memory alloys. Phys. Rev. B 91, 174111 (2015). (10.1103/PhysRevB.91.174111) / Phys. Rev. B by X Balandraud (2015)
  37. Blaysat, B. et al. Concurrent tracking of strain and noise bursts at ferroelastic phase fronts. Commun. Mater. 1, 3 (2020). (10.1038/s43246-020-0007-4) / Commun. Mater. by B Blaysat (2020)
  38. Shin, S.-C., Ryu, K.-S., Kim, D.-H. & Akinaga, H. Two-dimensional critical scaling behavior of Barkhausen avalanches. J. Appl. Phys. 103, 07D907 (2008). (10.1063/1.2830967) / J. Appl. Phys. by S-C Shin (2008)
  39. Tan, C. D. et al. Electrical studies of Barkhausen switching noise in ferroelectric PZT: critical exponents and temperature dependence. Phys. Rev. Mater. 3, 034402 (2019). (10.1103/PhysRevMaterials.3.034402) / Phys. Rev. Mater. by CD Tan (2019)
  40. Xu, Y. et al. Avalanche dynamics of ferroelectric phase transitions in BaTiO3 and 0.7Pb(Mg2∕3Nb1∕3)O3-0.3PbTiO3 single crystals. Appl. Phys. Lett. 115, 022901 (2019). (10.1063/1.5099212) / Appl. Phys. Lett. by Y Xu (2019)
  41. Akhmatkhanov, A. R., Esin, A. A., Vaskina, E. M., Alam, M. A. & Shur, V. Y. Analysis of the switching current peaks in KTP during superfast domain wall motion. Ferroelectrics 525, 11–17 (2018). (10.1080/00150193.2018.1432846) / Ferroelectrics by AR Akhmatkhanov (2018)
  42. Shur, V. Y., Kozhevnikov, V. L., Pelegov, D. V., Nikolaeva, E. V. & Shishkin, E. I. Barkhausen jumps in the motion of a single ferroelectric domain wall. Phys. Solid State 43, 1128–1131 (2001). (10.1134/1.1378156) / Phys. Solid State by VY Shur (2001)
  43. Yang, S. M., Kim, H.-H., Kim, T. H., Kim, I. J. & Yoon, J.-G. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films. J. Korean Phys. Soc. 60, 249–253 (2012). (10.3938/jkps.60.249) / J. Korean Phys. Soc. by SM Yang (2012)
  44. Bokov, A. A. & Ye, Z.-G. Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Appl. Phys. 95, 6347–6359 (2004). (10.1063/1.1703830) / J. Appl. Phys. by AA Bokov (2004)
  45. Casals, B., Nataf, G. F., Pesquera, D. & Salje, E. K. H. Avalanches from charged domain wall motion in BaTiO3 during ferroelectric switching. APL Mater. 8, 011105 (2020). (10.1063/1.5128892) / APL Mater. by B Casals (2020)
  46. Wang, R. et al. Local twin domains and tip-voltage-induced domain switching of monoclinic MC phase in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by piezoresponse force microscopy. Phys. Rev. B 94, 054115 (2016). (10.1103/PhysRevB.94.054115) / Phys. Rev. B by R Wang (2016)
  47. Catalan, G. et al. Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008). (10.1103/PhysRevLett.100.027602) / Phys. Rev. Lett. by G Catalan (2008)
  48. Daniels, J. E. et al. Two-step polarization reversal in biased ferroelectrics. J. Appl. Phys. 115, 224104 (2014). (10.1063/1.4881835) / J. Appl. Phys. by JE Daniels (2014)
  49. Schultheiß, J. et al. Revealing the sequence of switching mechanisms in polycrystalline ferroelectric/ferroelastic materials. Acta Mater. 157, 355–363 (2018). (10.1016/j.actamat.2018.07.018) / Acta Mater. by J Schultheiß (2018)
  50. Genenko, Y. A. et al. Stochastic multistep polarization switching in ferroelectrics. Phys. Rev. B 97, 144101 (2018). (10.1103/PhysRevB.97.144101) / Phys. Rev. B by YA Genenko (2018)
  51. Shur, V. Y. et al. Barkhausen jumps during domain wall motion in ferroelectrics. Ferroelectrics 267, 347–353 (2002). (10.1080/00150190211031) / Ferroelectrics by VY Shur (2002)
  52. Baturin, I. S., Konev, M. V., Akhmatkhanov, A. R., Lobov, A. I. & Shur, V. Y. Investigation of jerky domain wall motion in lithium niobate. Ferroelectrics 374, 136–143 (2008). (10.1080/00150190802427531) / Ferroelectrics by IS Baturin (2008)
  53. Jach, T., Kim, S., Gopalan, V., Durbin, S. & Bright, D. Long-range strains and the effects of applied field at 180° ferroelectric domain walls in lithium niobate. Phys. Rev. B 69, 064113 (2004). (10.1103/PhysRevB.69.064113) / Phys. Rev. B by T Jach (2004)
  54. Dubey, A. K. et al. Modeling Barkhausen noise in magnetic glasses with dipole-dipole interactions. EPL (Europhys. Lett.) 112, 17011 (2015). (10.1209/0295-5075/112/17011)
  55. Stefanita, C.-G., Atherton, D. L. & Clapham, L. Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48, 3545–3551 (2000). (10.1016/S1359-6454(00)00134-8) / Acta Mater. by C-G Stefanita (2000)
  56. Amitrano, D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res. 108, 2044 (2003). (10.1029/2001JB000680) / J. Geophys. Res by D Amitrano (2003)
  57. Goebel, T. H. W. et al. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett. 40, 2049–2054 (2013). (10.1002/grl.50507) / Geophys. Res. Lett. by W Goebel (2013)
  58. Jiang, X., Liu, H., Main, I. G. & Salje, E. K. H. Predicting mining collapse: superjerks and the appearance of record-breaking events in coal as collapse precursors. Phys. Rev. E 96, 023004 (2017). (10.1103/PhysRevE.96.023004) / Phys. Rev. E by X Jiang (2017)
  59. Wang, L., Ma, S. & Ma, L. Accelerating moment release of acoustic emission during rock deformation in the laboratory. Pure Appl. Geophys. 165, 181–199 (2008). (10.1007/s00024-008-0305-0) / Pure Appl. Geophys. by L Wang (2008)
  60. Lennartz-Sassinek, S., Main, I. G., Zaiser, M. & Graham, C. C. Acceleration and localization of subcritical crack growth in a natural composite material. Phys. Rev. E 90, 052401 (2014). (10.1103/PhysRevE.90.052401) / Phys. Rev. E by S Lennartz-Sassinek (2014)
  61. Vasseur, J. et al. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials? Earth Planet. Sci. Lett. 475, 181–189 (2017). (10.1016/j.epsl.2017.07.011) / Earth Planet. Sci. Lett. by J Vasseur (2017)
  62. Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242–250 (2001). (10.1038/35065675) / Nature by JP Sethna (2001)
  63. Salje, E. K. H., Planes, A. & Vives, E. Analysis of crackling noise using the maximum-likelihood method: power-law mixing and exponential damping. Phys. Rev. E 96, 042122 (2017). (10.1103/PhysRevE.96.042122) / Phys. Rev. E by EKH Salje (2017)
  64. Baró, J. & Vives, E. Analysis of power-law exponents by maximum-likelihood maps. Phys. Rev. E 85, 066121 (2012). (10.1103/PhysRevE.85.066121) / Phys. Rev. E by J Baró (2012)
  65. Stauffer, D. & Aharony, A. Introduction To Percolation Theory 2nd edn (CRC Press, 2018). (10.1201/9781315274386)
Dates
Type When
Created 4 years, 7 months ago (Jan. 12, 2021, 1:36 p.m.)
Deposited 2 years, 8 months ago (Dec. 2, 2022, 5:08 a.m.)
Indexed 1 month, 1 week ago (July 12, 2025, 6:45 p.m.)
Issued 4 years, 7 months ago (Jan. 12, 2021)
Published 4 years, 7 months ago (Jan. 12, 2021)
Published Online 4 years, 7 months ago (Jan. 12, 2021)
Funders 1
  1. RCUK | Engineering and Physical Sciences Research Council 10.13039/501100000266 Engineering and Physical Sciences Research Council

    Region: Europe

    gov (National government)

    Labels4
    1. UKRI Engineering and Physical Sciences Research Council
    2. Engineering and Physical Sciences Research Council - UKRI
    3. Engineering & Physical Sciences Research Council
    4. EPSRC
    Awards1
    1. (No.EP/P024904/1)

@article{Casals_2021, title={Avalanche criticality during ferroelectric/ferroelastic switching}, volume={12}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-020-20477-6}, DOI={10.1038/s41467-020-20477-6}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Casals, Blai and Nataf, Guillaume F. and Salje, Ekhard K. H.}, year={2021}, month=jan }