Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractPolar van der Waals chalcogenophosphates exhibit unique properties, such as negative electrostriction and multi-well ferrielectricity, and enable combining dielectric and 2D electronic materials. Using low temperature piezoresponse force microscopy, we revealed coexistence of piezoelectric and non-piezoelectric phases in CuInP2Se6, forming unusual domain walls with enhanced piezoelectric response. From systematic imaging experiments we have inferred the formation of a partially polarized antiferroelectric state, with inclusions of structurally distinct ferrielectric domains enclosed by the corresponding phase boundaries. The assignment is strongly supported by optical spectroscopies and density-functional-theory calculations. Enhanced piezoresponse at the ferrielectric/antiferroelectric phase boundary and the ability to manipulate this entity with electric field on the nanoscale expand the existing phenomenology of functional domain walls. At the same time, phase-coexistence in chalcogenophosphates may lead to rational strategies for incorporation of ferroic functionality into van der Waals heterostructures, with stronger resilience toward detrimental size-effects.

Bibliography

Dziaugys, A., Kelley, K., Brehm, J. A., Tao, L., Puretzky, A., Feng, T., O’Hara, A., Neumayer, S., Chyasnavichyus, M., Eliseev, E. A., Banys, J., Vysochanskii, Y., Ye, F., Chakoumakos, B. C., Susner, M. A., McGuire, M. A., Kalinin, S. V., Ganesh, P., Balke, N., … Maksymovych, P. (2020). Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6. Nature Communications, 11(1).

Authors 22
  1. Andrius Dziaugys (first)
  2. Kyle Kelley (additional)
  3. John A. Brehm (additional)
  4. Lei Tao (additional)
  5. Alexander Puretzky (additional)
  6. Tianli Feng (additional)
  7. Andrew O’Hara (additional)
  8. Sabine Neumayer (additional)
  9. Marius Chyasnavichyus (additional)
  10. Eugene A. Eliseev (additional)
  11. Juras Banys (additional)
  12. Yulian Vysochanskii (additional)
  13. Feng Ye (additional)
  14. Bryan C. Chakoumakos (additional)
  15. Michael A. Susner (additional)
  16. Michael A. McGuire (additional)
  17. Sergei V. Kalinin (additional)
  18. Panchapakesan Ganesh (additional)
  19. Nina Balke (additional)
  20. Sokrates T. Pantelides (additional)
  21. Anna N. Morozovska (additional)
  22. Petro Maksymovych (additional)
References 36 Referenced 69
  1. Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio‐ and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017). (10.1002/adma.201602852) / Adv. Mater. by MA Susner (2017)
  2. Chang, K. et al. 2D ferroelectrics: enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 31, 1970016 (2019). (10.1002/adma.201970016) / Adv. Mater. by K Chang (2019)
  3. Wu, M. & Jena, P. The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1365 (2018). / Wiley Interdiscip. Rev.: Comput. Mol. Sci. by M Wu (2018)
  4. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  5. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). (10.1038/ncomms12357) / Nat. Commun. by F Liu (2016)
  6. Maisonneuve, V., Cajipe, V. B., Simon, A., Von Der Muhll, R. & Ravez, J. Ferrielectric ordering in lamellar CuInP2S6. Phys. Rev. B 56, 10860–10868 (1997). (10.1103/PhysRevB.56.10860) / Phys. Rev. B by V Maisonneuve (1997)
  7. Simon, A., Ravez, J., Maisonneuve, V., Payen, C. & Cajipe, V. B. Paraelectric–ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6, 1575–1580 (1994). (10.1021/cm00045a016) / Chem. Mater. by A Simon (1994)
  8. Bourdon, X., Maisonneuve, V., Cajipe, V. B., Payen, C. & Fischer, J. E. Copper sublattice ordering in layered CuMP2Se6 (M = In, Cr). J. Alloy. Compd. 283, 122–127 (1999). (10.1016/S0925-8388(98)00899-8) / J. Alloy. Compd. by X Bourdon (1999)
  9. Vysochanskii, Yu. M., Molnar, A. A., Gurzan, M. I., Cajipe, V. B. & Bourdon, X. Dielectric measurement study of lamellar CuInP2Se6: successive transitions towards a ferroelectric state via an incommensurate phase? Solid State Commun. 115, 13–17 (2000). (10.1016/S0038-1098(00)00131-9) / Solid State Commun. by YuM Vysochanskii (2000)
  10. Liubachko, V. et al. Anisotropic thermal properties and ferroelectric phase transitions in layered CuInP2S6 and CuInP2Se6 crystals. J. Phys. Chem. Solids 111, 324–327 (2017). (10.1016/j.jpcs.2017.08.013) / J. Phys. Chem. Solids by V Liubachko (2017)
  11. Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020). (10.1038/s41563-019-0532-z) / Nat. Mater. by JA Brehm (2020)
  12. Song, W., Fei, R. & Yang, L. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer. Phys. Rev. B 96, 235420 (2017). (10.1103/PhysRevB.96.235420) / Phys. Rev. B by W Song (2017)
  13. Vysochanskii, Y. M., Molnar, A. A., Gurzan, M. I. & Cajipe, V. B. Phase transitions in CuInP2(SexS1−x)6 layered crystals. Ferroelectrics 257, 147–154 (2001). (10.1080/00150190108016294) / Ferroelectrics by YM Vysochanskii (2001)
  14. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003). (10.1038/nature01501) / Nature by J Junquera (2003)
  15. Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015). (10.1021/acs.nanolett.5b00491) / Nano Lett. by A Belianinov (2015)
  16. Chyasnavichyus, M. et al. Size-effect in layered ferrielectric CuInP2S6. Appl. Phys. Lett. 109, 172901 (2016). (10.1063/1.4965837) / Appl. Phys. Lett. by M Chyasnavichyus (2016)
  17. Neumayer, S. M. et al. Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Phys. Rev. Mater. 3, 24401 (2019). (10.1103/PhysRevMaterials.3.024401)
  18. Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015). (10.1088/0953-8984/27/46/463003) / J. Phys. Condens. Matter by D Meier (2015)
  19. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  20. Rodriguez, B. J. et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl. Phys. Lett. 86, 012906 (2005). (10.1063/1.1845594) / Appl. Phys. Lett. by BJ Rodriguez (2005)
  21. Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. 53, 2226–2252 (2006). (10.1109/TUFFC.2006.169) / IEEE Trans. Ultrason. Ferroelectr. by SV Kalinin (2006)
  22. Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D. Appl. Phys. 44, 464006 (2011). (10.1088/0022-3727/44/46/464006) / J. Phys. D. Appl. Phys. by S Jesse (2011)
  23. Jesse, S. et al. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010). (10.1088/0957-4484/21/40/405703) / Nanotechnology by S Jesse (2010)
  24. Balke, N. et al. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. ACS Nano 8, 10229–10236 (2014). (10.1021/nn505176a) / ACS Nano by N Balke (2014)
  25. Jesse, S., Mirman, B. & Kalinin, S. V. Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006). (10.1063/1.2221496) / Appl. Phys. Lett. by S Jesse (2006)
  26. Hatt, R. A. & Cao, W. Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry. Phys. Rev. B 62, 818–823 (2000). (10.1103/PhysRevB.62.818) / Phys. Rev. B by RA Hatt (2000)
  27. Tolédano, P. & Guennou, M. Theory of antiferroelectric phase transitions. Phys. Rev. B 94, 014107 (2016). (10.1103/PhysRevB.94.014107) / Phys. Rev. B by P Tolédano (2016)
  28. Misirlioglu, I. B., Pintilie, L., Boldyreva, K., Alexe, M. & Hesse, D. Antiferroelectric hysteresis loops with two exchange constants using the two dimensional Ising model. Appl. Phys. Lett. 91, 202905 (2007). (10.1063/1.2814059) / Appl. Phys. Lett. by IB Misirlioglu (2007)
  29. Pan, W., Zhang, Q., Bhalla, A. & Cross, L. E. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. J. Am. Ceram. Soc. 72, 571–578 (1989). (10.1111/j.1151-2916.1989.tb06177.x) / J. Am. Ceram. Soc. by W Pan (1989)
  30. Zhou, L., Zimmermann, A., Zeng, Y.-P. & Aldinger, F. Fatigue of field-induced strain in antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 Ceramics. J. Am. Ceram. Soc. 87, 1591–1593 (2004). (10.1111/j.1551-2916.2004.01591.x) / J. Am. Ceram. Soc. by L Zhou (2004)
  31. Wei, X.-K. et al. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat. Commun. 5, 3031 (2014). (10.1038/ncomms4031) / Nat. Commun. by X-K Wei (2014)
  32. Barone, P., Di Sante, D. & Picozzi, S. Improper origin of polar displacements at CaTiO3 and CaMnO3 twin walls. Phys. Rev. B 89, 144104 (2014). (10.1103/PhysRevB.89.144104) / Phys. Rev. B by P Barone (2014)
  33. Aert, S. V. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523–527 (2012). (10.1002/adma.201103717) / Adv. Mater. by SV Aert (2012)
  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  35. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). (10.1002/jcc.20495) / J. Comput. Chem. by S Grimme (2006)
  36. Fonari, A. & Stauffer, S. vasp_raman.py. https://github.com/raman-sc/VASP/ (2013).
Dates
Type When
Created 5 years, 1 month ago (July 17, 2020, 10:23 a.m.)
Deposited 2 years, 8 months ago (Dec. 5, 2022, 7:05 p.m.)
Indexed 4 hours, 22 minutes ago (Aug. 23, 2025, 9:20 p.m.)
Issued 5 years, 1 month ago (July 17, 2020)
Published 5 years, 1 month ago (July 17, 2020)
Published Online 5 years, 1 month ago (July 17, 2020)
Funders 0

None

@article{Dziaugys_2020, title={Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6}, volume={11}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-020-17137-0}, DOI={10.1038/s41467-020-17137-0}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Dziaugys, Andrius and Kelley, Kyle and Brehm, John A. and Tao, Lei and Puretzky, Alexander and Feng, Tianli and O’Hara, Andrew and Neumayer, Sabine and Chyasnavichyus, Marius and Eliseev, Eugene A. and Banys, Juras and Vysochanskii, Yulian and Ye, Feng and Chakoumakos, Bryan C. and Susner, Michael A. and McGuire, Michael A. and Kalinin, Sergei V. and Ganesh, Panchapakesan and Balke, Nina and Pantelides, Sokrates T. and Morozovska, Anna N. and Maksymovych, Petro}, year={2020}, month=jul }