Abstract
Abstract2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd–even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.
Authors
10
- Naoki Higashitarumizu (first)
- Hayami Kawamoto (additional)
- Chien-Ju Lee (additional)
- Bo-Han Lin (additional)
- Fu-Hsien Chu (additional)
- Itsuki Yonemori (additional)
- Tomonori Nishimura (additional)
- Katsunori Wakabayashi (additional)
- Wen-Hao Chang (additional)
- Kosuke Nagashio (additional)
References
59
Referenced
322
-
Lee, S. R. et al. First Observation of ferroelectricity in ~1 nm ultrathin semiconducting BaTiO3 films. Nano Lett. 19, 2243–2250 (2019).
(
10.1021/acs.nanolett.8b04326
) / Nano Lett. by SR Lee (2019) -
Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).
(
10.1038/s41586-019-1255-7
) / Nature by D Ji (2019) -
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).
(
10.1126/science.1098252
) / Science by DD Fong (2004) -
Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973).
(
10.1063/1.1662770
) / J. Appl. Phys. by RR Mehta (1973) -
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
(
10.1038/nature01501
) / Nature by J Junquera (2003) -
Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).
(
10.1038/nature05148
) / Nature by M Stengel (2006) -
Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).
(
10.1038/s41467-019-09669-x
) / Nat. Commun. by S Yuan (2019) -
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).
(
10.1038/s41586-018-0336-3
) / Nature by Z Fei (2018) -
You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).
(
10.1126/sciadv.aav3780
) / Sci. Adv. by L You (2019) -
Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).
(
10.1021/acs.nanolett.7b02198
) / Nano Lett. by Y Zhou (2017) -
Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).
(
10.1126/sciadv.aar7720
) / Sci. Adv. by C Zheng (2018) -
Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).
(
10.1103/PhysRevLett.120.227601
) / Phys. Rev. Lett. by J Xiao (2018) -
Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).
(
10.1021/acs.nanolett.7b04852
) / Nano Lett. by C Cui (2018) -
Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).
(
10.1002/adfm.201803738
) / Adv. Funct. Mater. by F Xue (2018) -
Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).
(
10.1126/science.aad8609
) / Science by K Chang (2016) -
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
(
10.1038/ncomms12357
) / Nat. Commun. by F Liu (2016) -
Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).
(
10.1021/acsnano.8b01810
) / ACS Nano by M Si (2018) -
Xue, F. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 1901300, 1901300 (2019).
(
10.1002/adma.201901300
) / Adv. Mater. by F Xue (2019) -
Wan, S. et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10, 14885–14892 (2018).
(
10.1039/C8NR04422H
) / Nanoscale by S Wan (2018) -
Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015).
(
10.1021/acs.nanolett.5b00491
) / Nano Lett. by A Belianinov (2015) -
Xue, F. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 12, 4976–4983 (2018).
(
10.1021/acsnano.8b02152
) / ACS Nano by F Xue (2018) -
Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016).
(
10.1021/acs.nanolett.6b00726
) / Nano Lett. by M Wu (2016) -
Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4, 015042 (2017).
(
10.1088/2053-1583/4/1/015042
) / 2D Mater. by H Wang (2017) -
Hanakata, P. Z., Carvalho, A., Campbell, D. K. & Park, H. S. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B 94, 035304 (2016).
(
10.1103/PhysRevB.94.035304
) / Phys. Rev. B by PZ Hanakata (2016) -
Barraza-Lopez, S., Kaloni, T. P., Poudel, S. P. & Kumar, P. Tuning the ferroelectric-to-paraelectric transition temperature and dipole orientation of group-IV monochalcogenide monolayers. Phys. Rev. B 97, 024110 (2018).
(
10.1103/PhysRevB.97.024110
) / Phys. Rev. B by S Barraza-Lopez (2018) -
Lebedev, A. I. Ferroelectricity and piezoelectricity in monolayers and nanoplatelets of SnS. J. Appl. Phys. 124, 164302 (2018).
(
10.1063/1.5035419
) / J. Appl. Phys. by AI Lebedev (2018) -
Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).
(
10.1103/PhysRevLett.117.097601
) / Phys. Rev. Lett. by R Fei (2016) -
Fei, R., Li, W., Li, J. & Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015).
(
10.1063/1.4934750
) / Appl. Phys. Lett. by R Fei (2015) -
Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).
(
10.1021/jz3012436
) / J. Phys. Chem. Lett. by K-AN Duerloo (2012) -
Higashitarumizu, N., Kawamoto, H., Ueno, K. & Nagashio, K. Fabrication and surface engineering of two-dimensional SnS toward piezoelectric nanogenerator application. MRS Adv. 3, 2809–2814 (2018).
(
10.1557/adv.2018.404
) / MRS Adv. by N Higashitarumizu (2018) -
Guo, Y., Zhou, S., Bai, Y. & Zhao, J. Oxidation resistance of monolayer group-IV monochalcogenides. ACS Appl. Mater. Interfaces 9, 12013–12020 (2017).
(
10.1021/acsami.6b16786
) / ACS Appl. Mater. Interfaces by Y Guo (2017) -
Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).
(
10.1021/acs.nanolett.9b01419
) / Nano Lett. by Y Bao (2019) -
Tian, Z., Guo, C., Zhao, M., Li, R. & Xue, J. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11, 2219–2226 (2017).
(
10.1021/acsnano.6b08704
) / ACS Nano by Z Tian (2017) -
Xia, J. et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 8, 2063–2070 (2016).
(
10.1039/C5NR07675G
) / Nanoscale by J Xia (2016) -
Li, M. et al. Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes. RSC Adv. 7, 48759–48765 (2017).
(
10.1039/C7RA09430B
) / RSC Adv. by M Li (2017) -
Song, H.-Y. & Lü, J.-T. Density functional theory study of inter-layer coupling in bulk tin selenide. Chem. Phys. Lett. 695, 200–204 (2018).
(
10.1016/j.cplett.2018.02.013
) / Chem. Phys. Lett. by H-Y Song (2018) -
Higashitarumizu, N. et al. Self-passivated ultra-thin SnS layers via mechanical exfoliation and post-oxidation. Nanoscale 10, 22474–22483 (2018).
(
10.1039/C8NR06390G
) / Nanoscale by N Higashitarumizu (2018) -
Sutter, P. & Sutter, E. Growth mechanisms of anisotropic layered group IV chalcogenides on van der Waals substrates for energy conversion applications. ACS Appl. Nano Mater. 1, 3026–3034 (2018).
(
10.1021/acsanm.8b00660
) / ACS Appl. Nano Mater. by P Sutter (2018) -
Wang, S. F., Fong, W. K., Wang, W. & Surya, C. Growth of highly textured SnS on mica using an SnSe buffer layer. Thin Solid Films 564, 206–212 (2014).
(
10.1016/j.tsf.2014.06.010
) / Thin Solid Films by SF Wang (2014) -
Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).
(
10.1021/nl401561r
) / Nano Lett. by Y Li (2013) -
Hsu, W.-T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).
(
10.1021/nn500228r
) / ACS Nano by W-T Hsu (2014) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Loudon, R. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).
(
10.1080/00018736400101051
) / Adv. Phys. by R Loudon (1964) -
Wang, H. & Qian, X. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017).
(
10.1021/acs.nanolett.7b02268
) / Nano Lett. by H Wang (2017) -
Sun, Y. et al. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1300611 (2014).
(
10.1002/aenm.201300611
) / Adv. Energy Mater. by Y Sun (2014) -
Pintilie, L., Stancu, V., Trupina, L. & Pintilie, I. Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure. Phys. Rev. B 82, 085319 (2010).
(
10.1103/PhysRevB.82.085319
) / Phys. Rev. B by L Pintilie (2010) -
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).
(
10.1038/s41586-018-0129-8
) / Nature by Y Liu (2018) -
Vidal, J. et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl. Phys. Lett. 100, 032104 (2012).
(
10.1063/1.3675880
) / Appl. Phys. Lett. by J Vidal (2012) -
Hajzus, J. R. et al. Contacts to solution-synthesized SnS nanoribbons: dependence of barrier height on metal work function. Nanoscale 10, 319–327 (2017).
(
10.1039/C7NR07403D
) / Nanoscale by JR Hajzus (2017) -
Longnos, F. et al. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories. Solid. State Electron. 84, 155–159 (2013).
(
10.1016/j.sse.2013.02.013
) / Solid. State Electron. by F Longnos (2013) -
Yin, S. et al. Emulation of learning and memory behaviors by memristor based on Ag migration on 2D MoS2 surface. Phys. Status Solidi 216, 1900104 (2019).
(
10.1002/pssa.201900104
) / Phys. Status Solidi by S Yin (2019) -
Fukunaga, M. & Noda, Y. New technique for measuring ferroelectric and antiferroelectric hysteresis loops. J. Phys. Soc. Jpn. 77, 064706 (2008).
(
10.1143/JPSJ.77.064706
) / J. Phys. Soc. Jpn. by M Fukunaga (2008) -
Shen, X.-W., Tong, W.-Y., Gong, S.-J. & Duan, C.-G. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater. 5, 011001 (2017).
(
10.1088/2053-1583/aa8d3b
) / 2D Mater. by X-W Shen (2017) -
Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).
(
10.1088/0953-8984/20/02/021001
) / J. Phys. Condens. Matter by JF Scott (2008) -
Pintilie, L. & Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 87, 112903 (2005).
(
10.1063/1.2045543
) / Appl. Phys. Lett. by L Pintilie (2005) -
Tsurumaki, A., Yamada, H. & Sawa, A. Impact of Bi deficiencies on ferroelectric resistive switching characteristics observed at p-type Schottky-like Pt/Bi1-δFeO3 interfaces. Adv. Funct. Mater. 22, 1040–1047 (2012).
(
10.1002/adfm.201102883
) / Adv. Funct. Mater. by A Tsurumaki (2012) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
(
10.1002/jcc.20495
) / J. Comput. Chem. by S Grimme (2006) -
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
(
10.1016/j.scriptamat.2015.07.021
) / Scr. Mater. by A Togo (2015)
Dates
Type | When |
---|---|
Created | 5 years, 3 months ago (May 15, 2020, 6:05 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 5, 2022, 5:03 p.m.) |
Indexed | 1 day, 5 hours ago (Aug. 31, 2025, 6:07 a.m.) |
Issued | 5 years, 3 months ago (May 15, 2020) |
Published | 5 years, 3 months ago (May 15, 2020) |
Published Online | 5 years, 3 months ago (May 15, 2020) |
Funders
1
MEXT | Japan Society for the Promotion of Science
10.13039/501100001691
Japan Society for the Promotion of ScienceRegion: Asia
gov (National government)
Labels
6
- KAKENHI
- 日本学術振興会
- Gakushin
- JSPS KAKEN
- JSPS Grants-in-Aid for Scientific Research
- JSPS
Awards
3
- JP19H00755, 19K21956, JP19J13579 and JP 18H01154
- the JSPS A3 Foresight Program
- A. Advanced Research Networks
@article{Higashitarumizu_2020, title={Purely in-plane ferroelectricity in monolayer SnS at room temperature}, volume={11}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-020-16291-9}, DOI={10.1038/s41467-020-16291-9}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Higashitarumizu, Naoki and Kawamoto, Hayami and Lee, Chien-Ju and Lin, Bo-Han and Chu, Fu-Hsien and Yonemori, Itsuki and Nishimura, Tomonori and Wakabayashi, Katsunori and Chang, Wen-Hao and Nagashio, Kosuke}, year={2020}, month=may }